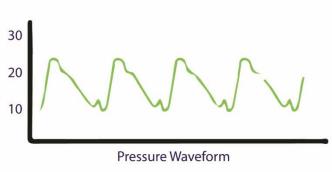
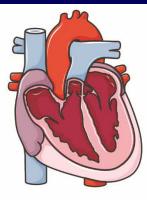
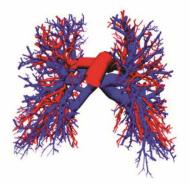
Pulmonary Hypertension and the Role of Echocardiography

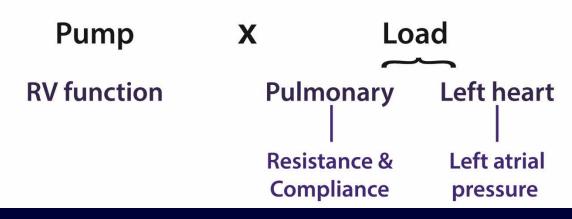
Linda D. Gillam, MD, MPH, FACC, FASE Chair, Department of Cardiovascular Medicine Director, Cardiovascular Service Line Morristown Medical Center/Atlantic Health System Professor of Medicine Sidney Kimmel Medical College Thomas Jefferson University

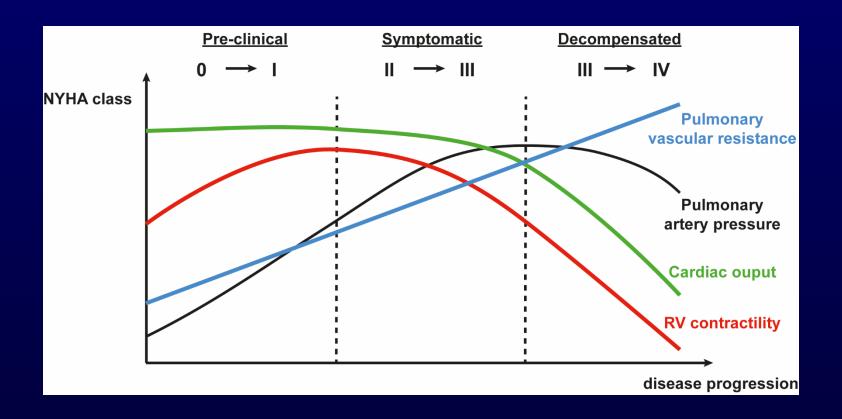





No disclosures

Companion to RV presentation





Pulmonary Artery Pressure

The degree of pulmonary hypertension is best based on the degree of RV dysfunction not the PA pressure

Role of Echocardiography

- Assess pressures, PVR
- Assess RV function
- Assess the left heart

- Provide prognostic information
- Identify underlying causes

 Distinguish pre- from post-capillary PHTN

Assessing PA pressures during stress

Definitions

Pulmonary Artery Pressures

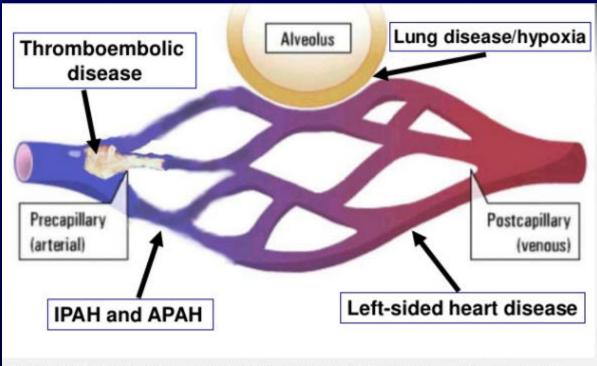
	Normal	PHTN
Systolic	20-30	>30
Diastolic	5-12	>12
Mean	10-20	>25

Journal of the American College of Cardiology © 2013 by the American College of Cardiology Foundation Published by Elsevier Inc. Vol. 62, No. 25, Suppl D, 2013 ISSN 0735-1097/\$36.00 http://dx.doi.org/10.1016/j.jacc.2013.10.029

Updated Clinical Classification of Pulmonary Hypertension

Gerald Simonneau, MD, * Michael A. Gatzoulis, MD, PHD, † Ian Adatia, MD, † David Celermajer, MD, PHD, § Chris Denton, MD, PHD, || Ardeschir Ghofrani, MD, ¶ Miguel Angel Gomez Sanchez, MD, # R. Krishna Kumar, MD, ** Michael Landzberg, MD, †† Roberto F. Machado, MD, ‡‡ Horst Olschewski, MD, §§ Ivan M. Robbins, MD, || || Rogiero Souza, MD, PHD ¶ ¶

Le Kremlin-Bicêtre and Paris, France; London, United Kingdom; Edmonton, Alberta, Canada; Sydney, Australia; Marburg, Germany; Madrid, Spain; Kerala, India; Boston, Massachusetts; Chicago, Illinois; Graz, Austria; Nashville, Tennessee; and São Paulo, Brazil


Table 1 Updated Classification of Pulmonary Hypertension*

- 1. Pulmonary arterial hypertension
- 1.1 Idiopathic PAH
- 1.2 Heritable PAH
- 1.2.1 BMPR2
- 1.2.2 ALK-1, ENG, SMAD9, CAV1, KCNK3
- 1.2.3 Unknown
- 1.3 Drug and toxin induced
- 1.4 Associated with:
- 1.4.1 Connective tissue disease
- 1.4.2 HIV infection
- 1.4.3 Portal hypertension
- 1.4.4 Congenital heart diseases
- 1.4.5 Schistosomiasis
- 1' Pulmonary veno-occlusive disease and/or pulmonary capillary hemangiomatosis
- 1". Persistent pulmonary hypertension of the newborn (PPHN)
- 2. Pulmonary hypertension due to left heart disease
 - 2.1 Left ventricular systolic dysfunction
 - 2.2 Left ventricular diastolic dysfunction
- 2.3 Valvular disease

2.4 Congenital/acquired left heart inflow/outflow tract obstruction and congenital cardiomyopathies

- 3. Pulmonary hypertension due to lung diseases and/or hypoxia
 - 3.1 Chronic obstructive pulmonary disease
 - 3.2 Interstitial lung disease
 - 3.3 Other pulmonary diseases with mixed restrictive and obstructive pattern
 - 3.4 Sleep-disordered breathing
 - 3.5 Alveolar hypoventilation disorders
 - 3.6 Chronic exposure to high altitude
 - 3.7 Developmental lung diseases
- 4. Chronic thromboembolic pulmonary hypertension (CTEPH)
- Pulmonary hypertension with unclear multifactorial mechanisms
 - 5.1 Hematologic disorders: chronic hemolytic anemia, myeloproliferative disorders, splenectomy
 - 5.2 Systemic disorders: sarcoidosis, pulmonary histiocytosis,
 - lymphangioleiomyomatosis
 - 5.3 Metabolic disorders: glycogen storage disease, Gaucher disease, thyroid disorders 5.4 Others: tumoral obstruction, fibrosing mediastinitis, chronic renal failure, segmental PH

*5th WSPH Nice 2013. Main modifications to the previous Dana Point classification are in bold. BMPR = bone morphogenic protein receptor type II; CAV1 = caveolin-1; ENG = endoglin; HIV = human immunodeficiency virus; PAH = pulmonary arterial hypertension.

IPAH = idiopathic pulmonary artery hypertension; APAH = associated pulmonary artery hypertension.

Pulmonary arterial hypertension (pre-capillary PHTN)

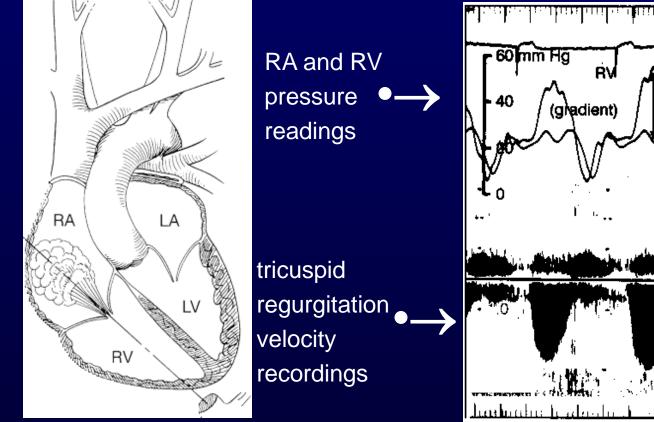
 PHTN in which PCWP ≤ 15 mmHg and PVR > 3 WU

Back to echo....

Calculating PA pressure

PA systolic pressure

Assume PASP = RVSP



Calculating RV pressure

Yock PG Circulation 1984;70:657 and Currie PJ et al JACC 1985;6:750

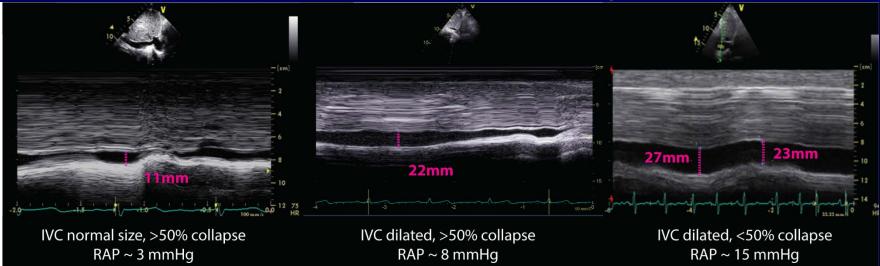
(33)

2.7 (29)

4 x (TR 'velocity)² = RVP-RAP 4 x (TR velocity)² + RAP = RVSP

Contrast can help....

Right atrial pressure



What is the right atrial pressure?

•	IVC	Δ with resp	RAP(mmHg)
•	<2.1 cm	collapse>50%	0-5 (3)
•	>2.1 cm	Dec<50%	10-20 (15)
•	<2.1 cm	Dec<50%	5-10 (8)
•	>2.1 cm	Dec> 50%	5-10 (8)

ASE Guidelines

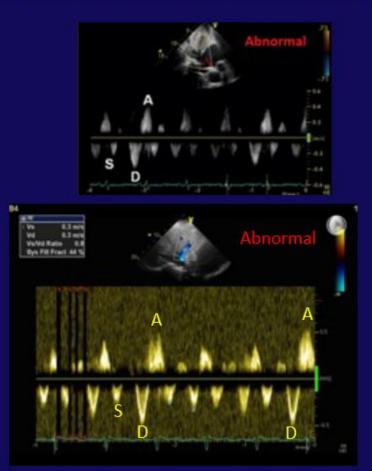
1-2 cm from IVC-RA junction


• Limitations:

- inadequate inspiratory effort
- "losing" the image

Circulation. 1996 Mar 15;93(6):1160-9.

Relation of mean right atrial pressure to echocardiographic and Doppler parameters of right atrial and right ventricular function.


Nagueh SF¹, Kopelen HA, Zoghbi WA.

Normal: Systolic predominance in hep. vein flow

• *Systolic filling fraction:* Vs/ (Vs + Vd) < 55% sensitive and specific for increased RA pressure

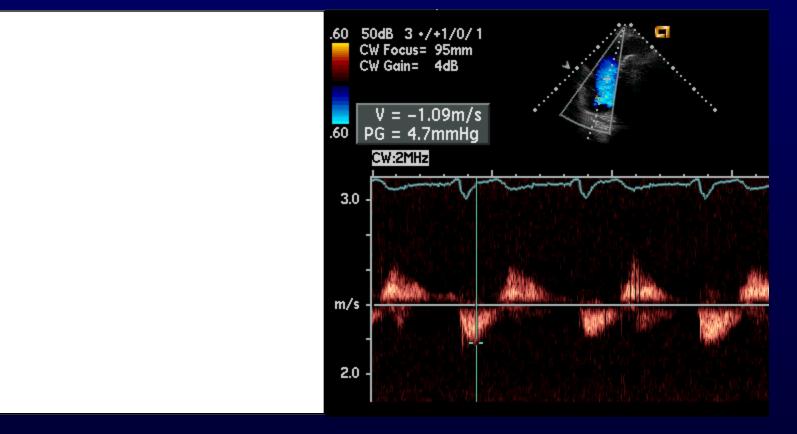
Abnormal: A wave is larger than systolic S wave

Abnormal: Vs/Vd< 1 (eg; High RA pressure)

Normal values

Peak TR velocity

≤ 2.8 – 2.9 m/s


Peak systolic pressure 35 or 36 mm Hg* (assuming an RA pressure of 3 to 5 mm Hg)

•You can't calculate the RV pressure....

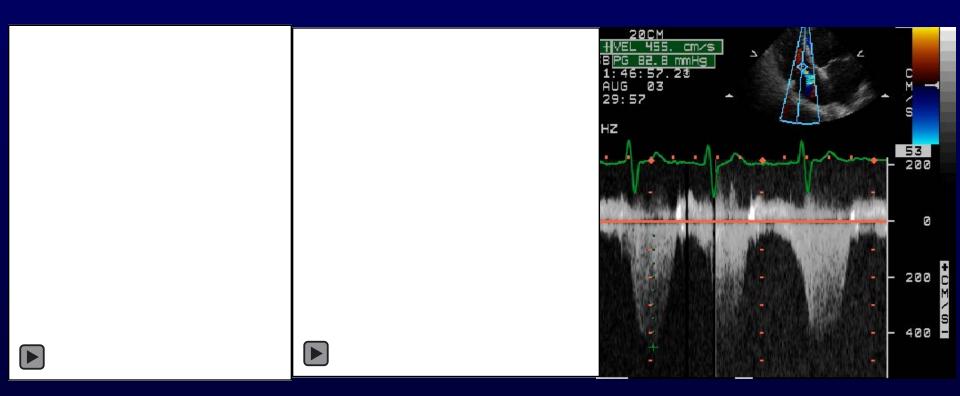
• When TR is unrestricted:

- Large color flow jet dimension
- Failure of leaflet coaptation
- When TR jet is laminar or shows little mosaic

When is the RV systolic pressure≠PA pressure?

• When there is:

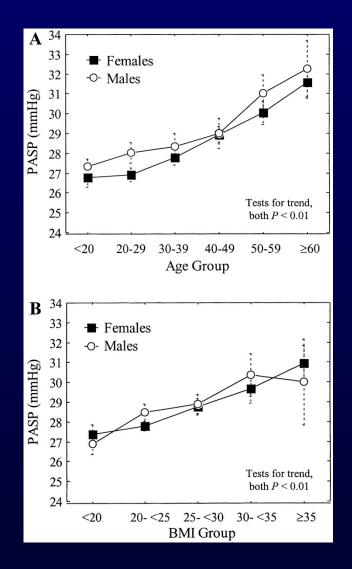
A gradient across the RVOT



When there is PS

- Calculate RVSP in the usual fashion RVSP= 4 TRvel² + RAP
- Calculate RV-PA gradient gradient = $4V^2$
- Subtract gradient from RVSP
 PASP= RVSP gradient

You must evaluate the RVOT!

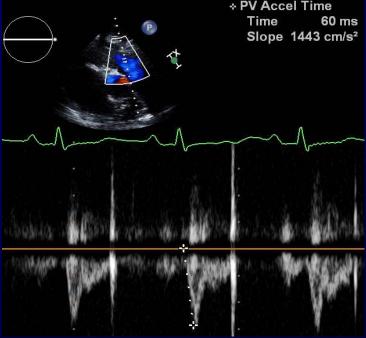

•PASP= 83-44 = 39mmHg

•Clinical Correlates and Reference Intervals for Pulmonary Artery Systolic Pressure Among Echocardiographically Normal Subjects

•by Brendan M. McQuillan, Michael H. Picard, Marcia Leavitt, and Arthur E. Weyman

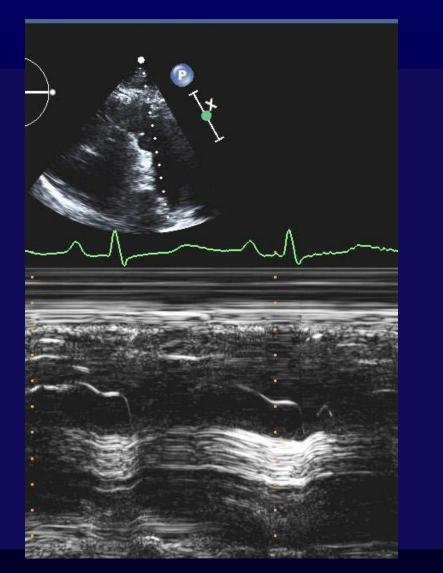
•Circulation •Volume 104(23):2797-2802 •December 4, 2001

Relation between PASP and age (A) and BMI (B).



Brendan M. McQuillan et al. Circulation. 2001;104:2797-2802

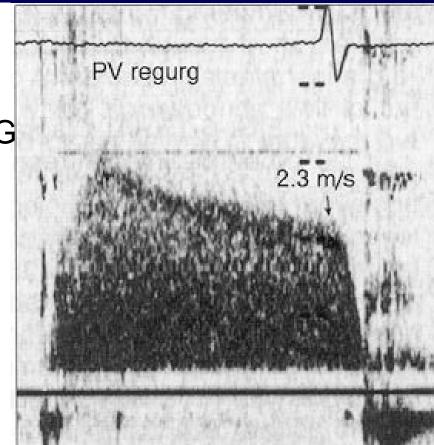
• Copyright © American Heart Association, Inc. All rights reserved.


Pulmonary Artery Acceleration Time

Normal	120 - 140 ms
Borderline	100 ms
Usually PHTN	<80 - 90 ms
Severe PHTN	< 60 ms

- Modal velocity
- Level of leaflets
- Inversely related to HR (consider only for 60-100 bpm)
- Highly variable!
 - Beat to beat
 - Location
 - RV function

Flying W

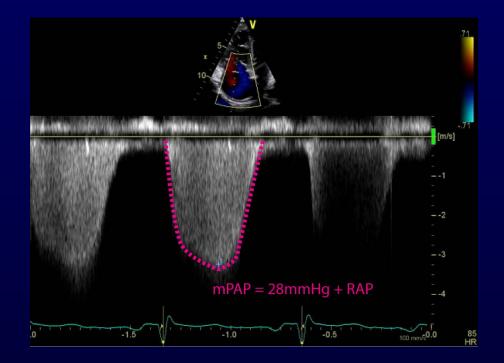

 Timing may reflect location of "obstruction"

PA diastolic pressure

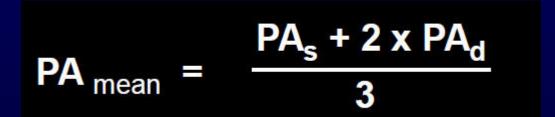
PA Diastolic Pressure

- PA RV= 22mmHG
- •RAP = 3 mmHG
- •PAD = 25 mmHG

Mean PA pressure



Mean PAP Method 1


Chest 2004;126:1313-17

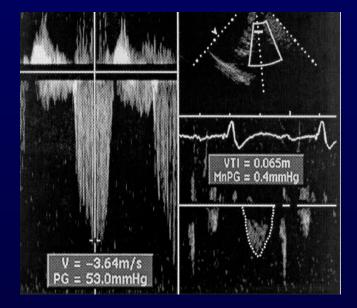
Mean PAP Method 2

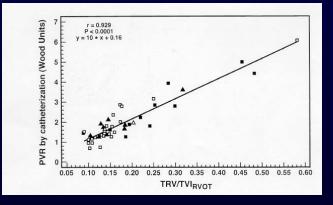
Mean PAP Method 3

Mean PAP Method 4 Not recommended

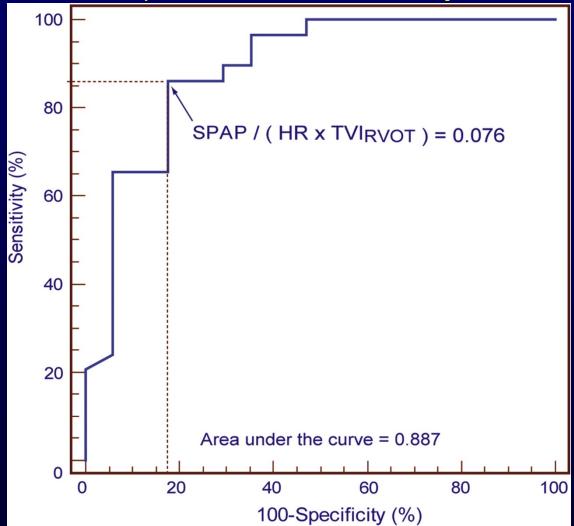
$PA_{mean} = 79 - 0.45 \times PAcT$

Pulmonary Vascular Resistance


Pulmonary Vascular Resistance


 PVR = PA-LA /CO normal= 0.5-1.5 (Wood units)

PVR = 10(TRV/VTI) + 0.16


Note: does not consider HR

•Abbas et al JACC 2003; 41:1021

Haddad et al (PVRI >15 WU/m2)

• Journal of the American Society of Echocardiography 2009 22, 523-529DOI: (10.1016/j.echo.2009.01.021) • Copyright © 2009 American Society of Echocardiography<u>Terms and Conditions</u>

Consider calculating when..

- Calculated PASP unexpectedly high
- Known or suspected increased PV flow

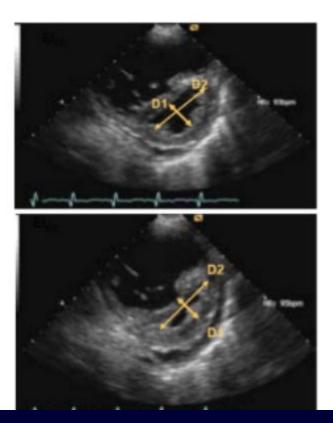
 ASD, VSD, post valvotomy severe PR, high output state (exercise)
- Note: neither method addresses LA pressure, will overestimate PVR if LA pressure is high

The RV in PHTN

- Multiple views
- Multiple techniques
 - -Qualitative
 - -Quantitative

- Multiple views
- Multiple techniques
 - -Qualitative
 - -Quantitative

Echocardiographic Markers of Prognosis


- TAPSE <15
- RV Tei Index >0.88
- RV FAC decreasing
- Pericardial effusion
- LV eccentricity index

Eccentricity Index

A measure of septal displacement in systole or diastole

- Eccentricity Index EI = D2/D1
 - D1= minor axis diameter perpendicular to IVS
 - D2= minor axis diameter parallel to IVS

Ryan, T. et al. J Am Coll Cardiol 1985;5: 918-24

Stress Echocardiography in Pulmonary Hypertension

Normal response to exercise

Limited normative data

Indications for Testing

- Elucidating symptoms
- High risk groups
 - Family members/Genotype positive
 - CT disease
 - -HIV
- ?High altitude
- Treadmill vs. bicycle
- Role of assessing RV contractile reserve is uncertain

Summary

- The echo assessment of pulmonary hypertension is more than the peak TR jet
- Must consider pressures and ventricular function
- Echo is an excellent tool to do both

Thank you!

