A 27 year old female presents with shortness of breath. The following 3D TEE is obtained. What is the most likely diagnosis?

1. Dehisced mechanical aortic prosthesis
2. Stenosed bioprosthetic mitral valve
3. Stenosed bioprosthetic aortic valve
4. Dehisced mechanical mitral valve
A 27 year old female presents with shortness of breath. The following 3D TEE is obtained. What is the most likely diagnosis?

1. Dehisced mechanical aortic prosthesis
2. Stenosed bioprosthetic mitral valve
3. Stenosed bioprosthetic aortic valve
4. Dehisced mechanical mitral valve

A 36 year old patient presents with shortness of breath. A TEE was obtained. What is the most likely blood smear associated with this condition?

1. Eosinophilia
2. Red cell changes with lead poisoning
3. Hemolytic anemia
4. Thrombocytopenia
5. Excess of segmented neutrophils
A 36 year old patient presents with shortness of breath. A TEE was obtained. What is the most likely blood smear associated with this condition?

1. Eosinophilia
2. Red cell changes with lead poisoning
3. Hemolytic anemia
4. Thrombocytopenia
5. Excess of segmented neutrophils

A 31 woman presents with sudden onset of shortness of breath. A TEE is performed. Which is the most likely location of the culprit lesion?

1. P1 Flail
2. P2 Flail
3. P3 Flail
4. A2 Flail
5. A3 Flail
A 31 woman presents with sudden onset of shortness of breath. A TEE is performed. Which is the most likely location of the culprit lesion

1. P1 Flail
2. P2 Flail
3. P3 Flail
4. A2 Flail
5. A3 Flail

Which of the following is most consistent with a severe grade of mitral insufficiency?

1. A continuous Doppler signal that is an incomplete envelope of low signal intensity.
2. A peak E wave velocity of less than 1.2 m per second.
3. A maximal jet area as detected with color Doppler of less than 3.0cm².
4. A reversed systolic pulmonary venous waveform as detected with pulsed wave Doppler.
Which of the following is most consistent with a severe grade of mitral insufficiency?

1. A continuous Doppler signal that is an incomplete envelope of low signal intensity.
2. A peak E wave velocity of less than 1.2 m per second.
3. A maximal jet area as detected with color Doppler of less than 3.0cm^2.
4. A reversed systolic pulmonary venous waveform as detected with pulsed wave Doppler.

All of the following clinical situations will limit the accuracy of the pressure half-time method for the measurement of mitral valve area with the exception of:

1. Conditions that alter left atrial compliance.
2. Conditions that alter left ventricular compliance.
3. Rapid heart rate
4. Severe aortic insufficiency.
5. Severe degree of mitral stenosis.
All of the following clinical situations will limit the accuracy of the pressure half-time method for the measurement of mitral valve area with the exception of:

1. Conditions that alter left atrial compliance.
2. Conditions that alter left ventricular compliance.
3. Rapid heart rate
4. Severe aortic insufficiency.
5. Severe degree of mitral stenosis.