Aortic Stenosis: Spectrum of Disease, Low Flow/Low Gradient and Variants

Martin G. Keane, MD, FASE Professor of Medicine Lewis Katz School of Medicine at Temple University

4/30/2017

Aortic Stenosis Etiology

Senile/Degenerative Calcific

- Calcification resembles ectopic bone
- Risk factors similar to those for atherosclerosis
- Renal dysfunction may accelerate
- Premature Calcific Bicuspid / Congenital

Rheumatic

Less common in the United States

Less common

Type 2 Hyperlipidemia, SLE, Irradiation, Paget's Dz

Calcific Aortic Stenosis: Progressive reduction in leaflet motion

- Most common congenital anomaly (1-2%)
- Commissure may be horizontal or vertical
 Horizontal: Anterior and Posterior leaflets
 Vertical: Right and Left (coronary) leaflets
- Accel. Calcification —> premature stenosis
- Proximal aortopathy (even in normals)
 Associated abnormalities coarctation

Rheumatic Aortic Stenosis: Less calcification, More commissural fusion

Aortic Valve: Other Anomalies associated with AS

Unicuspid AoV

Quadracuspid AoV

Aortic Stenosis: Physiologic Sequelae

Chronic LV pressure overload

- Myocardial Hypertrophy Progressive, Concentric LA dilatation
- Progressive diastolic & systolic dysfunction
 END STAGE: Limited Cardiac Output

After long latency... SYMPTOMS:

- Early: Dyspnea and Fatigue (often subtle)
- Late: "Cardinal Symptoms"
 - Chest Pressure, Syncope, Congestive Heart Failure

Evaluation of AS:

Echo Essentials

- Valve Anatomy establish etiology
 Exclude other forms of LVOT obstruction
- Severity of stenosis

Physiologic sequelae

- LV hypertrophy, diastolic fxn, systolic fxn
- LA dilatation, Pulmonary hypertension

Evaluate concurrent disease

- Proximal aorta and arch
- Aortic Valve Regurgitation, Mitral Disease

(able 2. Measures of AS severity obtained by Doppler-echocardiography								
	Units	Formula/method	Cut-off for severe	Concept	Advantages	Limitations		
AS jet velocity ¹²⁻¹⁸	m/s	Direct measurement	4.0	Velocity increases as stenosis seventy increases	Direct measurement of velocity. Strongest predictor of clinical outcome	Correct measurement requires parallel alignment of ultrasound beam Flow dependent.		
Mean gradient ¹²⁻¹⁴	mmHg	$\Delta P = \sum 4v^2/N$	40	Pressure gradient calculated from velocity using the Bernouli equation	Mean gradient is obtained by tracing the velocity curve Units comparable to invasive measurements	 Accurate pressure gradients depend on accurate velocity data Flow dependent 		
Continuity equation valve area ¹⁶⁻¹⁸	cm ²	$\label{eq:ava} \begin{array}{l} \text{AVA} = (\text{CSA}_{\text{LVOT}} \times \\ \text{VTI}_{\text{LVOT}})/\text{VTI}_{\text{AV}} \end{array}$	1.0	Volume flow proximal to and in the stenotic orifice is equal	Measures effective orifice area Feasible in nearly all patients Relatively flow independent	Requires LVOT diameter and flow velocity data, along with aortic velocity. Measurement error more likely		
Simplified continuity equation ^{18,19}	cm²	$AVA = (CSA_{LVOT} \times $V_{LVOT})/V_{AV}$	1.0	The ratio of LVOT to aortic velocity is similar to the ratio of VTIs with native aortic valve stenosis	Uses more easily measured velocities instead of VTIs	Less accurate if shape of velocity curves is atypical		
Velocity ratio ^{18,30}	None	$VR = \frac{V_{\text{total}}}{V_{\text{tot}}}$	0.25	Effective AVA expressed as a proportion of the LVOT area	Doppler-only method. No need to measure LVOT size, less variability than continuity equation	Limited longitudinal data. Ignores LVOT size variability beyond patient size dependence		
Planimetry of anatomic valve area ^{21,22}	cm²	TTE, TEE, 3D-echo	1.0	Anatomic (geometric) CSA of the aortic valve orifice as measured by 2D or 3D echo	Useful if Doppler measurements are unavailable	Contraction coefficient (anatomic/effective valve area) may be variable. Difficult with severe valve calcification		

Aortic stenosis Assessment by Peak Velocity

- Mild stenosis: 2.0 2.9 m/s
- Moderate stenosis: 3.0 3.9 m/s
- Severe stenosis: > 4.0 m/s

"Very Severe" or "Critical" stenosis: > 5.0 m/s

Instantaneous vs. Peak-to-Peak

- Echo a more "physiologic" measurement
- Doppler peak gradient always higher
- Mean gradient and AVA should correlate
- Gradients are flow dependent

Aortic Stenosis: Mean Gradient

Mean Gradient

- Integration of velocity over time
- Estimate 0.7 * Peak Grad.
- Correlates with cath
 Peak-to-Peak gradient

Aortic stenosis Assessment by Mean Gradient

Mild stenosis:	< 20 mmHg
Moderate stenosis:	20 – 39 mmHg
Severe stenosis:	≥ 40 mmHg

Velocity and Gradient pitfall: Influence of Cardiac Output

High CO = High gradient

- Aortic regurgitation
- Hyperdynamic function

Low CO = Low gradient

- Reduced ejection fraction
- Small ventricular cavity/LVH
- High systemic vascular resistance/impedance
- Significant mitral regurgitation

Aortic stenosis Assessment of Valve Area

- Normal valve area: $= 3 4 \text{ cm}^2$
- Mild stenosis: > 1.5 cm²
- Moderate stenosis: 1.0 1.5 cm²
- Severe stenosis: < 1.0 cm²
- "Critical" stenosis: < 0.7 cm²

Calculation of AV Area: Continuity Equation

Based on conservation of mass

Flow within LVOT = Flow across AV

- LVOT area * VTI_{LVOT} = AVA * VTI_{AV}
- $[\pi * (LVOT_{radius})^2] * VTI_{LVOT} = AVA * VTI_{AV}$

•
$$[\pi * (LVOT_{radius})^2] * VTI_{LVOT} = AVA$$

VTI_{AV}

Flow through LVOT Pulse Wave Doppler

- Spectral EnvelopeWith sample volume in LVOT
- Velocity Time Integral (VTI)
 - flow through a single point

Planimetry

- Correlates with invasively obtained areas
- Flow dependent
 - Difficult to distinguish decreased opening due to LV failure

TEE superior - use of color flow area

Dense calcification reduces accuracy

Summary

Table 3 Recommendations for grading of AS severity

	Aortic sclerosis	Mild	Moderate	Severe			
Peak velocity (m/s)	≤2.5 m/s	2.6–2.9	3.0-4.0	≥4.0			
Mean gradient (mmHg)	-	<20	20–40	≥40			
AVA (cm ²)	-	> 1.5	1.0–1.5	<1.0			
Indexed AVA (cm ² /m ²)	-	>0.85	0.60-0.85	<0.6			
Velocity ratio	-	> 0.50	0.25-0.50	<0.25			
Baumgartner H, et al. JASE (2017) 30:372-392							

22

23

