Congenital Heart Disease An Approach for Simple and Complex Anomalies

Michael D. Pettersen, MD Director, Echocardiography Rocky Mountain Hospital for Children Denver, CO

Disclosures

• Consultant to Fuji Medical Imaging

ASCeXAM

• Contains questions on general congenital heart disease, not "adult" CHD

• Study guide contain all of the information in this talk plus addition topics that will be helpful for the exam

• There have been a few questions on fetal echo which have appeared on the ASCeXAM which are covered in the handout

 Insider information provided in study guide – topics that have appeared on prior exams (last page of study guide)

Which heart defect is more common?

- 19% 1. Tetralogy of Fallot
- 20% 2. Transposition of the Great Arteries
- 22% 3. Aortic Stenosis
- ^{19%} 4. Coarctation of the Aorta
- ^{19%} 5. Atrioventricular Canal

What is the most common defect seen with Down syndrome (trisomy 21)?

1. Patent Ductus Arteriosus 22%
2. Tetralogy of Fallot 20%
3. Aortic Stenosis
4. Ventricular septal defect
5. Coarctation of the Aorta

Congenital Heart Disease Spectrum of Congenital Heart Disease - Incidence

- 0.5–0.8% of live births *
- >30,000 individuals/year in U.S.
- 50% simple shunts (ASD, VSD, PDA)
 20% simple obstruction
 30% complex

* Excludes MVP (4-6%) & Bicuspid AV (1-2%)

Congenital Heart Disease

Spectrum of Congenital Heart Disease - Frequency

Cardiac Malformation	<u>% of CHD</u>	<u>M:F Ratio</u>
Ventr. Septal Defect	18-28	1:1
Patent Ductus Arter.	10-18	1:2-3
Tetralogy of Fallot	10-13	1:1
Atrial Septal Defect	7-8	1:2-4
Pulmonary Stenosis	7-8	1:1
Transp. of Grt. Art.	4-8	2-4:1
Coarctation of Aorta	5-7	2-5:1
AV Septal Defect	2-7	1:1
Aortic Stenosis	2-5	4:1
Truncus Arteriosus	1-2	1:1
Tricuspid Atresia	1-2	1:1
Tot. Anom Pulm Veins	1-2	1:1

Congenital Heart Disease Common Syndromes/Chromosomal Anomalies Associations Anomaly Trisomy 21 VSD, AV Canal Trisomy 18 VSD, PDA Trisomy 13 VSD, PDA, Dextrocardia Turner Coarctation, AS PS, HCM Noonan Supravalvar AS, Peripheral PS Williams ASD Holt-Oram Marfan Aortic root dilation, MVP DiGeorge VSD, arch anomalies, TOF

Congenital Heart Disease

- Currently over 1 million patients over 18 with CHD are alive in this country
- This increases at 4-5% per year
- 20,000 cardiac surgical procedures for CHD/year
- >90% of children with CHD survive to adulthood
- The majority of adult CHD patients will be post-op

The ASCeXAM does not cover much post-op disease, but has asked questions about operations

Case 1 - 3 month old with a murmur, tachypnea and failure to thrive

Case 1 - 3 month old with a murmur, tachypnea and failure to thrive

The defect shown in this example is:

- 1. Secundum VSD
- 2. Sinus Venosus VSD
- ★3. Perimembranous VSD
 - 4. Inlet VSD

0%

0%

0%

0%

0%

5. Supracristal VSD

An isolated VSD will generally produce enlargement of which chamber(s):

- **0%** 1. Left atrium, Left ventricle
- 0% 2. Right ventricle
- **0%** 3. Right ventricle, pulmonary artery
- 0% 4. Aorta
- ^{0%} 5. Right ventricle, right atrium

What is the right ventricular pressure?

1. Normal

0%

0%

0%

0%

0%

- 2. Supra systemic
- →3. Systemic
 - 4. Can't tell from information given
 - 5. Want to go home now

Ventricular Septal Defect Clinical

- Most common defect, 25% of CHD
- Shunt flow should be left to right
- Symptoms depend on the size of the hole

 →Large >50% of aortic annulus size
 →Medium 25-50% of annulus size
 →Small <25% of annulus size
- Large VSDs result in pulmonary edema
 → tachypnea, poor feeding, failure to thrive in infants
- In un-operated patients with large defects pulmonary vascular disease develops → shunt reversal and cyanosis (Eisenmenger's complex)

Ventricular Septal Defect Anatomy

RIGHT VENTRICULAR VIEW LEFT VENTRICULAR VIEW

Ventricular Septal Defect Parasternal Short-Axis - Mid-Ventricle

 \square

Ventricular Septal Defect Parasternal Short-Axis "Sweep"

Ventricular Septal Defect Apical Four- Chamber View

Ventricular Septal Defect Apical Five-Chamber View

Case 1- Review

Ventricular Septal Defect Case 2 – 8 y.o. with asymptomatic murmur

The defect shown in this example is:

- 1. Secundum VSD
- 2. Sinus Venosus VSD
- 3. Perimembranous VSD
- 4. Inlet VSD
- [℃] 5. Supracristal VSD

Question 10 - A common complication of this defect is:

- **0%** 1. Pulmonary valve endocarditis
- 0% 2. Aortic regurgitation
- **0%** 3. Aortic dissection
- **0%** 4. Tricuspid regurgitation
- **5.** Right ventricular enlargement

Case 2- Review

Ventricular Septal Defect Case 3 – No questions

Ventricular Septal Defect Case 3 – No questions

Ventricular Septal Defect

Case 3 - No questions

Ventricular Septal Defect Case 3 – No questions

Case 4 – 6 y.o. with continuous murmur

Case 4 – 6 y.o. with continuous murmur

Case 4 – 6 y.o. with continuous murmur

The Doppler tracing in this case implies:

- 1. Severe pulmonary hypertension
- 2. Severe systemic hypertension

0%

0%

0%

0%

0%

- 3. Severe coarctation of the aorta
- 4. Normal pulmonary artery pressure
 - 5. Severe pulmonary artery stenosis
Patent Ductus Arteriosus Clinical

- Continuous murmur in older patients
- Bounding pulses, wide pulse pressure, respiratory symptoms in neonates with a large PDA
- Large PDA will act much like a large VSD, producing pulmonary over-circulation and signs/symptoms of congestive heart failure
- A small PDA is generally hemodynamically insignificant but is at risk for endarteritis

Patent Ductus Arteriosus Anatomy

Innom. Vein→ (

Patent Ductus Arteriosus Ductal View Parasternal Ductal View (High Left Parasternal)

Patent Ductus Arteriosus Doppler Flow Pattern

Systolic PA pressure = $SBP - 4V_{PDA}^{2}$

Patent Ductus Arteriosus

Clinical management

- Large PDAs in preterm infants
 - Pharmacologic closure indomethacin
 - Surgical closure left lateral thoracotomy
- Small PDA in older infants and children
 - Catheter closure device or coil

Case 4 - Review

Case 4 - Review

Case 5 – Large PDA

Case 6 – Asymptomatic 3 month old with cyanosis and a cardiac murmur

Case 6 – Asymptomatic 3 month old with cyanosis and a cardiac murmur

The defect shown in this example is:

- 1. Single ventricle
- 2. Transposition of the great arteries
- 3. Perimembranous VSD
-
 [●]
 4. Tetralogy of Fallot
 - 5. Complete atrioventricular canal

Tetralogy of Fallot Background

- Accounts for 10-13% of congenital heart disease
- Most common cyanotic CHD
- Usually present as asymptomatic murmur
 Cyanosis usually develops/progresses with time
- Anatomy
 - →Ventricular Septal Defect
 - →Overriding Aorta
 - →RV outflow obstruction
 - \rightarrow RV hypertrophy

Tetralogy of Fallot Anatomic Variables

Mild Pulmonary Stenosis

Classic Tetralogy

Severe Tetralogy or Pulmonary Atresia Tetralogy of Fallot Associated Anomalies

- Valvular pulmonary stenosis 50-60%
- Right aortic arch 25%
- Atrial septal defect 15%
- Coronary anomalies 5%
- Muscular VSD 2%

Tetralogy of Fallot Subcostal RV Inflow/Outflow View MPA The right ventricular outflow obstruction is seen in this view. This is often the best angle for Doppler RA interrogation of the RVOT RV

Case 6 - Review

Tetralogy of Fallot Surgical Intervention

- Timing usually during first 6 months
- VSD closure, relief of RVOTO obstruction
- Many repairs require a trans annular RV outflow patch with results in chronic severe pulmonary regurgitation

→Likely need for late pulmonary valve replacement

 Rastelli type repair (VSD closure + RV to pulmonary artery conduit) may be required for complex anatomy – pulmonary atresia, coronary anomalies

Case 7 – 1 day old infant with tachypnea and SaO2 of 76%

What congenital heart defect is shown:

- 0% 1. Perimembranous VSD
 - 2. Truncus arteriosus

0%

0%

0

- 3. Corrected transposition of the great arteries (L-TGA)
- 4. Complete transposition of the great arteries (D-TGA)
- **0%** 5. Tetralogy of Fallot

Which of the following is the preferred surgical palliation of this defect?

- 1. Rastelli operation
- 2. Mustard operation
- 3. Jatene operation
- 4. Konno operation
- 5. Fontan operation

D-Transposition of the Great Arteries

- Most common cyanotic CHD presenting in the newborn nursery
- 4-8% of CHD
- Very high mortality without intervention (90% at 1 year of life)

D-Transposition of the Great Arteries Associated Anomalies

VSD 40-45%
Coronary anomalies ~ 40%
Pulmonary stenosis (valve or sub valve) - 25%
ASD
PDA
Coarctation - 5%

D-Transposition of the Great Arteries Parasternal Long Axis View

D-Transposition of the Great Arteries Parasternal Short Axis - Base

D-Transposition of the Great Arteries High Parasternal Short Axis - Base

Case 7-Review

D-Transposition of the Great Arteries Surgical Options >Arterial switch (Jatene) ♥ within first 1-2 weeks of life >Atrial switch (Mustard/Senning) VHas been largely abandoned >VSD closure/ RV-PA conduit (Rastelli) • within first few months of life • Used in the setting of d-TGA with PS/sub-PS requires conduit replacement/ future surgery

D-TGA Intervention-Rastelli Procedure

D-TGA Atrial Switch (Mustard/Senning) Operation

Gaca A M et al. Radiology 2008;247:617-631

TGA Jatene Arterial Switch Operation

Case 8 – 12 year old with asymptomatic murmur

Case 8 – 12 year old with asymptomatic murmur

The defect shown in this example is:

- ^{o%} 1. Secundum ASD
- ^{o%} 2. Sinus Venosus ASD
- ^{0%} 3. Perimembranous ASD
- •» 🗸 4. Primum ASD
- ^{0%} 5. Coronary sinus ASD

A common associated defect with this anomaly, shown in this case, is: 1. Bicuspid aortic valve 0% 2. Perimembranous VSD 0% 3. Patent ductus arteriosus 0% Coarctation of the aorta 0% 5. Cleft mitral valve 0%

10

Atrioventricular Septal Defects

-3-5% of CHD -High incidence in Down Syndrome -Physiology depends on which anatomic defects are present Complete AVSD 1. Primum ASD 2. Inlet VSD 3. Common AV Valve **Primum ASD** Partial AVSD nlet 1. Primum ASD 2. No VSD

 $\left(\right)$

3. Cleft Mitral Valve

Complete Atrioventricular Canal Associated Anomalies

- Patent ductus arteriosus
- Hypoplasia of one ventricle
- AV valve problems regurgitation
- LVOT obstruction

Atrioventricular Canal Long Axis View

Normal

AV Canal

and often has abnormal chordal attachments across the LV outflow area

Cleft Mitral Valve Parasternal Short-Axis View <u>Cleft</u> Inlet VSD's occur Normal in this location

Atrioventricular Canal Apical 4-Chamber View

Atrioventricular Canal Defects Subcostal Views

Case 8- Review

Case 9 – Complete AV Canal

Case 9 – Complete AV Canal

AV Septal Defects Physiology

- Physiology dependent on which components of AV septal defect are present
- If 1° ASD and no VSD physiology similar to isolated ASD (right sided volume overload)
- Complete AVSD marked volume and pressure overload (VSD shunt physiology)
- AV valve regurgitation may exacerbate volume overload and symptoms of heart failure

AV Septal Defects Surgical Intervention

Partial AVSD

 Usually electively repaired age 2-4 years
 Complicating features (AVV regurg., LVOTO) may necessitate earlier intervention

Complete AVSD

→Usually repaired by 6 months of age (earlier in trisomy 21) to prevent pulmonary vascular obstructive disease

Truncus Arteriosus Anatomy

• Characteristic anatomy characterized by:

Single arterial vessel that arises from the base of the heart and gives origin to:
Systemic arteries
Pulmonary arteries
Coronary arteries
Single semilunar valve

Truncus Arteriosus Anatomy

Associated Defects

- Abnormal coronaries (37-49%)
- Right aortic arch (30%)
- Abnormal truncal valve
- Absent pulmonary artery (16%)
- Interrupted aortic arch (15%)
- Left SVC (12%)
- Secundum ASD (9-20%)

Truncus Arteriosus Clinical Aspects

- Patients usually present due to the presence of a cardiac murmur
- Complete mixing of systemic and pulmonary venous blood results in cyanosis
- Excessive pulmonary blood flow causes sign and symptoms of congestive heart failure
- The cyanosis is generally mild

Truncus Arteriosus

Treatment

- Requires surgical repair in the first weeks of life
- Median sternotomy requiring bypass
- Palliative PA band rarely used in the current era
- Rastelli type repair
 →Close VSD to truncus
 →Disconnect PAs
 →RV to PA conduit

Case 10 Truncus Arteriosus

Case 10 Truncus Arteriosus

Anomalous Left Coronary Artery From the Pulmonary Artery - ALCAPA

- Rare congenital anomaly
- Usually presents at 2-3 m of age
- Results in severe LV ischemia
- Present as dilated CM, CHF
- ECG often diagnostic
- Patients survive w/ collateral flow
- Surgery done to re-implant vessel

Anomalous Left Coronary Artery Echocardiographic Clues

- Left ventricular dysfunction (usually severe)
- Mitral insufficiency due to LV dilation/dysfunction, papillary muscle infarction
- Endocardial fibroelastosis of LV and/or papillary muscles
- Failure to identify proximal LCA from aorta
- Unusual flow into main pulmonary artery

Case 11 ALCAPA

Total Anomalous Pulmonary Venous Return

Anatomic Types

Total Anomalous Pulmonary Venous Return Echo Clues

- Enlarged right heart
- Right to left atrial shunting
- Unusual "membranes" in left atrium
- Abnormal flow in systemic venous system
- Obstruction may occur at different levels
 →Most common infracardiac
- May be remarkably asymptomatic (in absence of obstruction)

Case 12 Supra cardiac TAPVR

Good Luck On Your Exam

Questions? michael_pettersen@pediatrix.com