Aortic Regurgitation: Etiology and Echo Quantification

Martin G. Keane, MD, FASE Professor of Medicine Lewis Katz School of Medicine at Temple University

ANNU

The most comprehensive review to help you prepare for the NBE certification examinations

Possible reasons that this color Doppler evaluation may overestimate AR include:

- A. Low color Doppler gain setting
- B. Use of too small a color Doppler sector
- C. Low Nyquist velocity setting
- D. High pulse repetition frequency (PRF)

- Which condition may lead to over-estimation of AR severity by deceleration slope (or P1/2) of diastolic Continuous Wave (CW) Doppler:
 - A. Advanced restrictive myocardial disease
 - B. Severe mitral valve stenosis
 - C. Severe aortic valve stenosis
 - D. Low Nyquist limit setting

A continuous wave Doppler cursor is placed at the junction of the aortic arch and proximal descending aorta, just beyond the left subclavian artery. The following is obtained:

- The etiology of the diastolic Doppler flow indicated by the arrow is:
 - A. Stenosis of the left subclavian artery
 - **B.** Severe aortic regurgitation
 - C. Moderate aortic regurgitation
 - D. Severe coarctation of the aorta

Aortic Regurgitation: Etiology

Valve

- Congenital (Bicuspid AV, Subaortic Stenosis)
- Endocarditis
- Degenerative
- Traumatic
- Rheumatic

Aortic Root

- Dilated aortic root
 - Marfan, Loeys-Dietz, Ehlers Danlos
 - Hypertension
 - Vasculitis
- Aortic Dissection

"The Aortic valve is the Root"

Cusps attached to root in "coronet"

Sinuses and motion of root important for valve opening and competence

Anatomy of Regurgitation: Leaflet Malcoaptation

- Proximal aortic dilatation
 - Central Regurgitation
- Leaflet thickening/retraction
 - Rheumatic, degenerative
- Leaflet destruction
 Endocarditis, Trauma
 - Leaflet prolapse
 Aortic dilatation / dissection

Etiology of Regurgitation: Bicuspid Aortic Valve

- Most common "congenital" AV abnormality
- Significant premature valve disease
 - Aortic Regurgitation in 40%
 - Aortic Stenosis in 30%

Etiology of Regurgitation: Degenerative / Rheumatic

Degenerative Malcoaptation

Calcific deformities of cusps and commissures

Rheumatic Malcoaptation

Thickening/retraction of cuspal edges and commissures

Schaefer BM. Heart (2008) 94:1634-38;

Rosenhek R. NEJM (2000) 343:611-7.

Etiology of Regurgitation: *Proximal Aortic Dilatation*

- Marfan, Loeys-Dietz, Ehlers-Danlos
- Non-syndromic aneurysms
- Chronic Hypertension

Etiology of Regurgitation: *Aortic Dissection*

- Retrograde extension past (proximal) ST junction
- Frequently associated with
 - Rupture into pericardial space, coronary dissection

Etiology of Regurgitation: Leaflet Prolapse

- Myxomatous / Congenital Abnormality
- Loss of commissural support
- Partial tear of cusp (trauma)
- Best seen on PLAX or on TEE 120°

Etiology of Regurgitation: Leaflet Destruction by Endocarditis

Pathophysiology: Acute Aortic Regurgitation

- Sudden, large regurgitant volume
 ↑ LVEDV → Marked ↑↑ LVEDP
 - Pulmonary Edema
- Decrease forward stroke volume
 - Cardiogenic shock
- Urgent intervention required
 - Nitroprusside/Inotropic agents
 - Surgical Repair

Pathophysiology: Chronic Aortic Regurgitation

Primary Volume Overload

- Increased Preload (... & Afterload!)
- Progressive ventricular dilation
 - Chamber compliance increases
 - Mild intracavitary pressure increase
- Myocardial hypertrophy
 - Compensation for increased wall stress
 - Maintains functionality of the ventricle

Chronic Aortic Regurgitation: Hypertrophy Process

La Place's Law: T = (P*R)/M

Increase in Radius (R) Compensates for Volume Overload

Wall Thickness (M) also Increases, Normalizing Wall Stress (T)

Grossman W, et al. J Clin Invest (1975) 56:56-64

Chronic Aortic Regurgitation:

PROGRESSIVE MYOCARDIAL DYSFUNCTION

- Impaired myocardial function
 - Slow increase in functionally abnormal myocytes
- Decreased coronary flow reserve
 - Secondary to hypertrophy
- Patients become symptomatic at different levels of LV dysfunction

Chronic Aortic Regurgitation: Natural History

Bonow RO, Lakatos E, Maron BJ, Epstein S. Circulation 1991, 84: 1625–1635

Chronic Aortic Regurgitation Indications for Surgery

Symptoms
End-systolic LV dimension > 5.0 cm
Ejection fraction < 50%
Diastolic LV dimension > 6.5 cm

... or rapid progression/deterioration of indices

Quantitation of Aortic Regurgitation: Echocardiographic Approaches

- Qualitative
- Semi-Quantitative
 "Guess-timating" Regurgitant Orifice
 - (Somewhat More) Quantitative
 - Based on volumetric calculations

Quantitation of Aortic Regurgitation: Echocardiographic Approaches

 Table 4 Qualitative and quantitative parameters useful in grading aortic regurgitation severity

	Mild	Moderate	Severe
Structural parameters			
LA size	Normal*	Normal or dilated	Usually dilated**
Aortic leaflets	Normal or abnormal	Normal or abnormal	Abnormal/flail, or wide coaptation defect
Doppler parameters			1
Jet width in LVOT –Color	Small in central jets	Intermediate	Large in central jets;
Flow^{ζ}			variable in eccentric jets
Jet density–CW	Incomplete or faint	Dense	Dense
Jet deceleration rate –CW	Slow > 500	Medium 500-200	Steep < 200
$(PHT, ms)^{\psi}$			
Diastolic flow reversal in	Brief, early diastolic	Intermediate	Prominent holodiastolic
descending aorta –PW	reversal		reversal
Quantitative parameters ^{\varphi}			
VC width, cm^{ζ}	< 0.3	0.3-0.60	> 0.6
Jet width/LVOT width, % ^ζ	< 25	25-45 46-64	≥ 65
Jet CSA/LVOT CSA, % ^ζ	< 5	5-20 21-59	≥ 60
R Vol, ml/beat	< 30	30-44 45-59	≥ 60
RF, %	< 30	30-39 40-49	≥ 50
EROA, cm ²	< 0.10	0.10-0.19 0.20-0.29	≥ 0.30

Semi-Quantitative: Jet Width vs. LVOT Diameter

Parasternal long axisTEE longitudinal plane

<25% = mild 25-64% = moderate ≥65% = severe

AR / LVOT = 29% Moderate AR

AR / LVOT = 73% Severe AR

We'se gots problems:

Semi-Quantitative: Jet Width vs. LVOT diam

Mild	Mode	Severe	
	Mild-Moderate	Moderate-Severe	
< 25%	25-45%	46-64%	≥ 65%

Sem Jet	Pitfa - M - Lo - Eo - Eo - Eo - Va - Bl	easuring too bw Nyquist lin cessive colo centrically-d centric origin ariation of flo	far down in L mits r Doppler gain irected jets n of jets w (width) e dependent	NOT AO LA Pre
		Mild-Moderate	Moderate-Severe	
< 2	25%	25-45%	46-64%	≥ 65%

Semi-Quantitative: Jet Area vs. Ao Root Area

Semi-Quantitative: Vena Contracta

Mild	Moderate	Severe
< 0.3 cm	0.3–0.60 cm	> 0.6 cm

Pitfalls:

- Eccentric origin (non-circular)
- Imprecision of measurement
- Multiple Jets
- Variation of flow (width)
- Blood pressure dependent

Mild	Moderate	Severe
< 0.3 cm	0.3–0.60 cm	> 0.6 cm

Continuous Wave Doppler Slope of Diastolic Spectral Envelope

Decrease in Ao - LV pressure gradient

- Fall in velocity during diastole
- Flat slope = minimal + diastolic gradient = mild AR

Continuous Wave Doppler Slope of Diastolic Spectral Envelope

Decrease in Ao - LV pressure gradient

- Fall in velocity during diastole
- Flat slope = minimal + diastolic gradient = mild AR

Semi-Quantitative: Diastolic CW Doppler Slope

AR jet	Mild	Moderate	Severe
Deceleration Slope (m/sec ²)	< 2	2 - 3.5	> 3.5
Pressure Half- time (msec)	> 500	500-200	< 200

Ser Dias	 Pitfalls: Poor (fuzzy) Doppler envelope Some severe AR have long P_{1/2} Low SVR decreases P_{1/2} Severe MR decreases P_{1/2} Restrictive filling decreases P_{1/2} 				
Deceleration Slope (m/sec ²) < < 2 < 3.5 > 3.5				> 3.5	
Pressure time (msec)	e Half-	> 500	500-200	< 200	

Don't let this happen to you!!

Qualitative Doppler: Desc. Aorta Flow Reversal Mild Moderate Severe Brief, **Prominent**, Intermediate, Holodiastolic **Early Diastolic Early-Mid Diastolic**

Quantitative Doppler for AR Volumetric Calculations

Regurgitant volume

- SVLVOT SVRVOT
- { $[\Pi/4 * (LVOT_{diam})^2]*VTI_{LVOT}$ } { $[\Pi/4 * (RVOT_{diam})^2]*VTI_{RVOT}$ }

Can also use

mitral inflow

instead

Regurgitant Fraction

RF = Regurgitant Volume / SV_{IVOT}

Effective Regurgitant Orifice Area $EROA = Regurgitant volume/VTI_{AR}$

Quantitative Doppler for AR Volumetric Calculations

Benefits:

- Correlates well with CMR volumetrics
- Multiple jets no problem
- Spectral flow better than color Doppler

Pitfalls:

- Use of mitral inflow requires too many assumptions
- Measuring RVOT flow and dimensions difficult
- Presence of AS confounds (LVOT acceleration)
- Inaccurate with >moderate MR or PR/PS

Quantitative Doppler Regurgitant Volume

Mild	Mode	Severe	
	Mild-Moderate	Moderate-Severe	
< 30 cc	30–44 сс	45–59 сс	≥ 60 cc

Quantitative Doppler Regurgitant Fraction

Mild	Mode	Severe	
	Mild-Moderate	Moderate-Severe	
< 30%	30-39%	40-49%	≥ 50%

Quantitative Doppler Regurgitant Orifice Area

Mild	Moderate		Severe
	Mild-Moderate	Moderate-Severe	
< 10 mm²	10–19 mm ²	20–29 mm ²	≥ 30 mm²

Quantitative Doppler for AR PISA is Possible (...but unlikely)

WHY DO WE CARE ABOUT THIS??

Timing of Surgical Intervention Appropriate Patient Follow Up Passing Echo Board Exams

Aortic Regurgitation: Summary

- Progressive, asymptomatic disease
 Rate of progression varies individually
 - Close clinical and echo follow up essential
- Medical treatment options are limited
- Symptoms indicate need for surgery
- Severity of AR and LV functional indices
 KEY parameters in asymptomatic patients

Aortic Regurgitation: Summary

An INTEGRATIVE approach is required

	Mild	Ν	Moderate	Severe
Specific signs for AR severity	 Central Jet, width < 25% of LVOT^ζ Vena contracta < 0.3 cm^ζ No or brief early diastolic flow reversal in descending aorta 	Signs of AR>mild present but no criteria for severe AR Intermediate values		 Central Jet, width ≥ 65% of LVOT^ζ Vena contracta > 0.6cm^ζ
Supportive signs	 Pressure half-time > 500 ms Normal LV size* 			 Pressure half-time < 200 ms Holodiastolic aortic flow reversal in descending aorta Moderate or greater LV enlargement**
Quantitative parameters ⁴				
R Vol, ml/beat	< 30	30-44	45-59	≥ 60
RF, %	< 30	30-39	40-49	≥ 50
EROA, cm ²	< 0.10	0.10-0.19	0.20-0.29	≥ 0.30

Possible reasons that this color Doppler evaluation may overestimate AR include:

- A. Low color Doppler gain setting
- B. Use of too small a color Doppler sector
- C. Low Nyquist velocity setting
- D. High pulse repetition frequency (PRF)

Review Question #1 Answer:

Possible reasons that this color Doppler evaluation may overestimate AR include:

A. Low color Doppler gain setting

B. Use of too small a color Doppler sector

C. Low Nyquist velocity setting

D. High pulse repetition frequency (PRF)

- Which condition may lead to over-estimation of AR severity by deceleration slope (or P1/2) of diastolic Continuous Wave (CW) Doppler:
 - A. Advanced restrictive myocardial disease
 - B. Severe mitral valve stenosis
 - C. Severe aortic valve stenosis
 - D. Low Nyquist limit setting

Which condition may lead to over-estimation of AR severity by deceleration slope (or P1/2) of diastolic Continuous Wave (CW) Doppler:

A. Advanced restrictive myocardial disease

- **B.** Severe mitral valve stenosis
- C. Severe aortic valve stenosis
- D. Low Nyquist limit setting

A continuous wave Doppler cursor is placed at the junction of the aortic arch and proximal descending aorta, just beyond the left subclavian artery. The following is obtained:

- The etiology of the diastolic Doppler flow indicated by the arrow is:
 - A. Stenosis of the left subclavian artery
 - **B.** Severe aortic regurgitation
 - C. Moderate aortic regurgitation
 - D. Severe coarctation of the aorta

- The etiology of the diastolic Doppler flow indicated by the arrow is:
 - A. Stenosis of the left subclavian artery
 - **B.** Severe aortic regurgitation
 - C. Moderate aortic regurgitation

D. Severe coarctation of the aorta

Thank You!

