The Normal Echocardiogram

Pravin V. Patil, MD FACC Lewis Katz School of Medicine at Temple University

Acknowledgments

Dr. Susan Wiegers

Dr. Martin Keane

Temple Cardiac Sonographers

Disclosures

✓ No relevant financial disclosures

Which aortic cusp is noted by the arrow?

✓ Which myocardial segment is denoted by the arrow?

O

GAIN 60 Comp 80 718PM

20CM 45HZ

> P ... R 1.6 3.2

B. Mid Anteroseptum

A. Mid Anterior

C. Mid Inferoseptum

D. Basal Anteroseptum

E. Mid Inferolateral

Which scallop is noted by the arrow?

A. Non-coronary

B. A2

C. P1

D. A1

E. A3

How do you optimize this acquisition?

What does the arrow indicate?

A. Eustachian Valve

B. RA thrombus

C. Chiari Network

D. Catheter in RA

Transthoracic Echocardiography

Normal Echocardiography

Why do we need to review this?

✓ Recognize pathology when it exists

✓ ASCeXAM

- Standardized image acquisition
- Image optimization
- Anatomic identification
- Chamber quantification
- "Less known" normal structures
- AUC/Indications/Contraindications

Appropriate Use Criteria

Appropriate Use Criteria for Echocardiography – J Am Soc Echocardiogr 2011;24:229-267

Indication		Appropriate use score (1-9)	
Murmur or Click With TTE			
34.	 Initial evaluation when there is a reasonable suspicion of valvular or structural heart disease 	A (9)	
35.	 Initial evaluation when there are no other symptoms or signs of valvular or structural heart disease 	I (2)	
36.	 Re-evaluation in a patient without valvular disease on prior echocardiogram and no change in clinical status or cardiac exam 	l (1)	
37.	 Re-evaluation of known valvular heart disease with a change in clinical status or cardiac exam or to guide therapy 	A (9)	
Native Valvular Stenosis With TTE			
38.	 Routine surveillance (<3 y) of mild valvular stenosis without a change in clinical status or cardiac exam 	I (3)	
39.	 Routine surveillance (≥3 y) of mild valvular stenosis without a change in clinical status or cardiac exam 	A (7)	
40.	 Routine surveillance (<1 y) of moderate or severe valvular stenosis without a change in clinical status or cardiac exam 	I (3)	
41.	 Routine surveillance (≥1 y) of moderate or severe valvular stenosis without a change in clinical status or cardiac exam 	A (8)	

TEE Guidelines

✓ TEE Indications & Contraindications – J Am Soc Echocardiogr 2013;26:921-964

Table 6 List of absolute and relative contraindications to transesophageal echocardiography

Perforated viscus History of radiation to neck and mediastinum	Absolute contraindications	Relative contraindications
 Esophageal stricture Esophageal tumor Esophageal perforation, laceration Esophageal diverticulum Active upper GI bleed Barrett's esophagia Restriction of neck mobility (severe cervical arthritis, atlantoaxial joint disease) Symptomatic hiatal hernia Esophageal varices Coagulopathy, thrombocytopenia Active esophagitis 	 Perforated viscus Esophageal stricture Esophageal tumor Esophageal perforation, laceration Esophageal diverticulum Active upper GI bleed 	 History of radiation to neck and mediastinum History of GI surgery Recent upper GI bleed Barrett's esophagus History of dysphagia Restriction of neck mobility (severe cervical arthritis, atlantoaxial joint disease) Symptomatic hiatal hernia Esophageal varices Coagulopathy, thrombocytopenia Active esophagitis

· Active peptic ulcer disease

Parasternal Long Axis

Depth Matters...

Down One Interspace

Up One Interspace

Off-Axis Measurements

On-Axis Measurements

ASE/AHA 17 Segment Model

Short Axis LV

Apical Four Chamber

0

JPEG

Apical 4 Chamber

□ ≅

ASE/AHA 17 Segment Model

ASE Chamber Quant Guidelines, JASE 2015

Normal?

Ηz

Poor Endocardial Border Definition

Lewis Katz School of Medicine

Apical Foreshortening

Contrast for LV Opacification

✓ Commercial Contrast

- Improve endocardial border definition
- Eliminate foreshortening
- Evaluate for mural thrombi
- Restore diagnostic quality

ASCeXAM Focus

✓ How do you fix this image? Recognize off-axis views Imaging from wrong interspace Foreshorten cardiac structure Contrast use and optimization ✓ Anatomical identification Myocardial segment identification ✓ Extracardiac findings recognition ✓ Common Artifacts

Tissue Harmonic Imaging

- Non-linear distortion of acoustic signal in tissue generates harmonics
- Noise/artifacts generate no significant harmonic
- Tissue Harmonic Imaging takes advantage of increased SNR

Tissue Harmonic Imaging

Fundamental

Tissue Harmonic

Bubbles Have Harmonics too..

Harmonics 1.3/2.6 MHz

Fundamental 1.6 MHz

Doppler Echocardiography

 Optimal 2D images when ultrasound beam is <u>perpendicular</u> to structures

✓ Optimal Doppler imaging when ultrasound beam is <u>parallel</u> to flow

 Apical views allow alignment with most cardiac flows (i.e. aortic, mitral and tricuspid valves)

Doppler Echocardiography

✓ Color Doppler

- Pulse wave modality that cannot resolve high velocities
- Turbulence/variance maps can help define jet, direction and turbulence
- ✓ Pulse Wave Spectral Doppler
 - Range specific
 - Subject to aliasing at high velocities like CFD
- ✓ Continuous Wave Spectral Doppler
 - Able to resolve high velocities
 - Range ambiguous

Color Flow Doppler

- Pay attention to the baselineMake note of the Nyquist limit
- Color scales vary
 Variance maps
 Optimize size and sector for frame rate

Doppler Optimization

Doppler Optimization

ASCeXAM Focus

✓ Effects of harmonic imaging
✓ Appropriate indications for contrast
✓ Contrast Physics and optimization
✓ Types of Doppler and technique limitations
✓ Spectral Doppler signal optimization
✓ Color Flow Doppler optimization

Transesophageal Echocardiography

Left Atrial Appendage

Mitral Valve

Hahn et al. TEE Guidelines. JASE 2013;26:921-64

Lewis Katz School of Medicine

3D Mitral Valve

Aortic Valve

SAX

3D Aortic Valve

Bi-Caval View

Lewis Katz School of Medicine

F

Transgastric LV

ASCeXAM Focus

✓ TEE not heavily tested
✓ AUC, Indications and Contraindications for TEE
✓ Anatomical identification
✓ Standard 3D views of Mitral and Aortic valves
✓ Correlative anatomic imaging with TTE

Normal Anatomic Structures

Transthoracic and Transesophageal Echocardiography

Persistent Venous Valves

Chiari Network

- ✓ No known function
- ✓ Not present in every patient
- Netlike structure that is highly mobile
- ✓ Usually arises from the vicinity of the IVC not attached to the septum

Eustachian Valve

- ✓ Directs IVC flow across fossa in fetus
- Present in every fetus
- Ridge of tissue rarely mobile at all
- ✓ Arises from the IVC and runs to the fossa

Chiari Network

Apical Four

Eustachian Valve

Crista Terminalis

Normal structure
Often confused for a right atrial mass
Smooth myocardial ridge from RA-SVC junction along posterolateral RA wall

Moderator Band

Coronary Sinus

Pericardial Sinuses

Transverse Sinus

Subcostal SAX Aortic Valve

):: 1.7 MHz/3.3 MHz): 37.1/ (h: 26日 cm

26.

Coronary Arteries

TEMPLE UNIVERSITY Lewis Katz School of <u>Medicine</u>

Coronary Arteries

GAIN 60 COMP 53 79BPM

MI:1.7

54

14CM 30HZ-

Coronary Arteries

10.

I

15.

TEE Aortic Valve

TEE Aortic Valve

48°

0 15 180

LAD or Circumflex?

JPEG

Papillary Muscles

Pulmonary Veins

Pulmonary Veins

Suprasternal Notch

Suprasternal Notch

ASCeXAM Focus

✓ Normal Anatomic Structures

- Right Heart
 - Persistent Venous Valve
 - Crista Terminalis
 - Coronary Sinus
 - Moderator Band

Left Heart

- Pericardial Sinuses
- Pulmonary Veins
- Coronary Arteries
- Papillary Muscles
- Suprasternal Notch

Question 1

Which aortic cusp is noted by the arrow?

Question 1 - Followup

Answer: B. Left Coronary Cusp

RVOT.

Ν

LA

Ν

R

Question 2

✓ Which myocardial segment is denoted by the arrow?

O

GAIN 60 Comp 80 718PM

20CM 45HZ

> P ... R 1.6 3.2

B. Mid Anteroseptum

A. Mid Anterior

C. Mid Inferoseptum

D. Basal Anteroseptum

E. Mid Inferolateral

Question 2 - Followup

Answer: C. Mid Inferoseptum

Question 3

Which scallop is noted by the arrow?

A. Non-coronary

B. A2

C. P1

D. A1

E. A3

Question 3 - Followup

Answer: E. A3 Scallop

Question 4

How do you optimize this acquisition?

Question 4 - Followup

Question 5

What does the arrow indicate?

A. Eustachian Valve

B. RA thrombus

C. Chiari Network

D. Catheter in RA

Question 5 - Followup

Answer: C. Chiari Network

Chiari Network

- ✓ No known function
- Not present in every patient
- Netlike structure that is highly mobile
- Usually arises from the vicinity of the IVC not attached to the septum

Eustachian Valve

- ✓ Directs IVC flow across fossa in fetus
- ✓ Present in every fetus
- Ridge of tissue rarely mobile at all
- ✓ Arises from the IVC and runs to the fossa
 ■ TEMPI

Thank You!

