Comprehensive Hemodynamics By Doppler Echocardiography. The Echocardiographic Swan-Ganz Catheter.

Itzhak Kronzon, MD, FASE, FACC, FESC, FAHA, FACP, FCCP North Shore HS, LIJ/Lenox Hill Hospital, New York Professor of Cardiology Hofstra University Medical School

Mastering the use of Doppler: The non invasive alternative to Swan-Ganz

No Dsclosures

PA Catheter

Gold standard of hemodynamic monitoring?

- -Rt sided and PCW pressures. Volume status
- -Pulmonary blood flow and pulmonary vascular resistance
- -Shunt location and magnitude

PA CATHETER:

No cardiac imaging- Unable to demonstrate

- -Segmental or global wall motion
- -Valvular anatomy
- -Intracardiac masses and clots
- -Pericadial effusion

Catheter entrance

PA Catheter- Complications

- -Bleeding, hemothorax
- -Clot formation and embolization
- -Infection, sepsis, endocarditis
- -PA perforation
- -Arterial puncture, AV fistula, pseudoaneurysm Left heart entry
- -Pneumothorax
- -Valvular tear
- -Catheter knotting, Balloon rupture
- -Ahrrythmia

AFTER RISK STRATIFICATION, PATIENTS MONITORED BY PA CATHETER HAD HIGHER MORTALITY AND MORBIDITY THAN PATIENT MONITORED BY ECHO

ECHOCARDIOGRAPHY

-Monitoring of chambers size, volume and motion

- -Valve anatomy and pathology
- Intracardiac masses
- Pericardal abnormalities
- -Blood flow, cardiac output and shunts
- -Intracardiac pressures

The Simplified Bernoulli Equation

$P = 4V^{2}$ P = pressure (mm Hg) V = velocity (m / sec)

Liv Hatle

IVC Dimensions

- IVC diameter \leq 1.7 cm which collapses >50% with a sniff suggests RA pressure 0-5 mmHg
- IVC diameter > 1.7 cm which collapses <50% with a sniff suggests RA pressure 10-20 mmHg
- Scenarios where IVC diameter & collapse do not fit this paradigm, an intermediate value of 5-10 mmHg should be used.

2 GRIN COMP: 65 2 NE D-HE 100 : 22: 22. 18 81 58:56 . . RA Pressure = 5 mmHg

Markedly elevated RA pressure (> 15 mm Hg)

Note: 1. Dilated IVC 2. Lack of respiratory variation

Evaluation of RV Systolic Pressure

RV systolic pressure = TR gradient + RA pressure

Evaluation of RV Diastolic Pressure

In the absence of TS RV diastolic pressure = RA pressure

In the presence of TS RV diastolic pressure = RA pressure - TS gradient

Evaluation of PA Systolic Pressure

In the absence of PS PA systolic pressure = RV systolic pressure = TR gradient + RA pressure

In the presence of PS PA systolic pressure = = RV systolic pressure - PS gradient

Pressure Gradients in VSD

An alternative (non-TR based) way of estimating RV systolic pressure

67 y.o. with acute MI and heart failure

Post MI VSD BP 175/70mmHg

LV-RV systolic gradient = 4x6x6=144mmHg

RV systolic pressure = systolic BP - VSD gradient = 31 mmHg

CW of Pulmonic Valve Flow

The study suggests: 1. Severe PS 2. Right heart failure 3. Pulmonary hypertension 4. Constrictive Pericarditis

CW of Pulmonic Valve Flow

Pulmonary hypertension

Note the end-diastolic velocity of 2.5 m/sec, indicating an end diastolic gradient of 25 mmHg between the PA and RV •Mean PA pressure: 4V² (Max PR Velocity)

Pulmonary Artery Mean Pressure

PA mean $P = 0.6 \times PASP + 1.95 mmHg$

Severe PHT

- 1. No A wave
- 2. Systolic "flying W"
- 3. No diastolic posterior motion

RVOT Acceleration time

Mean $PAP = 79 - (0.45 \times AcT)$

Normal AcT > 120msec

If AcT<90msec, peak PA systolic pressure is more than 60 mmHg

Mean PAP = 79 - (0.45 * 90) = 79 - 40 = 39 mmHg

Evaluation of LA Pressure from transmitral and PV flow

A. Normal6 - 12 mm HgB. Abnormal Relax.8 - 14C. Pseudonormal15 - 22D. Restrictive> 22

Calculation of LA pressure

Patient with small ASD after Mitral Valvuloplasty Estimated RA pressure 10mmHg. What is the peak LAP?

3.5m/sec

CONTRACTOR OF THE OWNER OF

INVERSE OF THE OWNER OF TAXABLE OF TAXAB

PAT T: 37.0C TEE T: 38.8C

Calculation of LA pressure in a pt with ASD

LAP=RAP(10)+ASD max gradient (50)= 10+50 = 60mmHg

- 100

cm/s

-100

--200

--400

78bpm

75mm/s

POST MI VSD

The RA pressure is 10mmHg. What is the LVEDP?

 a) 12mmHg
 c) 26mmHg

 b) 16mmHg
 d) 50mmHg

LVEDP = RV(RA) EDP+ End diastolic left to right gradient LVEDP= 10 + 16= 26mmHg

Pulmonary Vascular Resistance

Normal =2 Wood's units

PVR = (mean PAP- mean PCWP)/C.O.

Another method

PVR=10 (Peak TR Velocity/RVOT VTI + 0.16)

PVR=Wood's units TR Velocity = m/sec RVOT TVI = cm

CW of MR Jet in a pt with a BP of 120 / 80. The MR velocity is 7.7 m / sec

The most likely dx is:
1. Aortic Stenosis
2. Aortic Insufficiency
3. High Cardiac Output
4. Pulmonary Embolism

CW of MR Jet in a pt with a BP of 120 / 80

Aortic Stenosis

The velocity of the MR jet indicates a peak systolic LV-LA gradient of 237 mm Hg; Therefore the Aortic gradient is at least 120 mm Hg. **MR Velocity in AS**

CW of Aortic Valve Flow The BP is 150 / 80

The LV pressure is: 1. 84 / 16 2. 214 / 44 3. 214/16 4. 195/16

CW of Aortic Valve Flow The BP is 150 / 80

ANSWER: 4. 195/16

LV (sys)= Sys. BP (150) + 70%Ao gradient (45) = 195 LV (dias) = Dias. BP (80) - Ao dias. Gradient (64) = 16

Aortic Valve Gradient

Peak - to - Peak Gradient (P2P)
 Maximum Instantaneous Gradient (MIG)
 Mean Gradient

Evaluation of LV Systolic Pressure

In pts without aortic valve disease: LV systolic pressure = systolic BP

In pts with AS or LVOT obstruction: LV systolic pressure = systolic BP + gradient

Evaluation of LV Diastolic Pressure

In pts with AR: LV end-diastolic pressure = diastolic BP - AR gradient

In the absence of MS: LVDP = (approx.) LA pressure

Calculation of LVEDP

Systemic diastolic BP - End Diastolic Aortic Gradient

Estimating LA Pressure by E/e' May Be Inaccurate in:

> Mitral Stenosis Mitral annular calcification Prosthetic MV Mitral regurgitation Diffuse severe LV dysfunction

Evaluation of LA Pressure in pt with MS

In MS, LA diastolic pressure = LVDP + transmitral gradient

Noninvasive Hemodynamic Study 63-Year-Old female with Dyspnea

BP 100/55

Bibasilar rales MS, AS, MR, TR murmurs

MMS + AS

MMR + AR

TR + PR

Normal IVC Size 2.0 cm <50% Respiratory Variation

RV Pressures

RV systolic = RA pressure (10) + TR gradient (56) = 66 mm Hg

In the absence of TS RV diastolic pressure = RA pressure

Systolic = RV systolic (66) Diastolic = PR gradient (20) + RA pressure (10) = 30

LVEDP = aortic diastolic pressure (55) – AR gradient (36) = 19mmHg

LV systolic pressure = aortic systolic pressure (100) + 70% of AV gradient (46) = 146mmHg

P2P = 0.7 * 66 = 46

LA pressure = LV diastolic (19) + MV mean gradient (7) = 26mmHg

Calculation of Systemic Blood Flow SBF = $VTI_{LVOT} X Area_{LVOT} X HR$

CGATE: 8.5CM e: 8 y = 20 CATE: 2.35CM e: 2 2D HOLD CO CATE: 2.20 CATE: D = 2 cmVTI = 24 cmHR = 80

SBF= 6,000 cc 1 x 1 x 3.14 x 24 x 80

Calculation of Pulmonary Blood Flow $C.O. = VTI_{RVOT} X Area_{RVOT} X HR$

Can also be calculated using RV inflow and TV VTI

Calculation of Shunts (ASD, VSD)

Shunt flow =

1. Pulmonary blood flow - systemic blood flow

- or -

2. ASD or VSD orifice area x Shunt VTI x HR

Calculation of ASD L-to-R Shunt

Shunt Flow = Orifice Area x VTI of shunt x HR = $0.6 \times 0.6 \times 3.14 \times 80 \times 100 = 9$ L/min.

Real time, 3D TEE: Secundum ASD

Pulmonary Vascular Resistance

Normal =2 Wood's units

PVR = (mean PAP- mean PCWP)/C.O.

Another method

PVR=10 (Peak TR Velocity/RVOT VTI + 0.16)

PVR=Wood's units TR Velocity = m/sec RVOT TVI = cm

Conclusions

Normal and abnormal hemodynamics can be evaluated non invasively by Doppler Echocardiography.

Invasive evaluation may be needed for details not seen on Echo, or when the clinical impression is not consistent with the echo-Doppler findings