Assessment of Tricuspid and Pulmonic Valve Disease: Importance of 3D

2D Echocardiography

M-mode
THE TV ON 3D ECHO

RV perspective

RA perspective

THE TRICUSPID VALVE: ADDED VALUE OF 3D IMAGING

< 5% of pts

~ 85% of pts
THE NORMAL TRICUSPID VALVE COMPLEX

1. Three leaflets
 - Anterior
 - Septal
 - Posterior
2. Fibrous annulus
3. Chordae tendinae
4. Papillary muscles
5. RA myocardium
6. RV myocardium

How many leaflets does the TV have?

Courtesy Dr. Stephen P. Sanders, Professor of Pediatrics (Cardiology), Harvard Medical School
HOW MANY LEAFLETS DOES THE TRICUSPID VALVE HAVE?

• 36 adult human hearts
• # leaflets vary from 3-7
• Extra leaflets are called “accessory leaflets”
• Accessory leaflets are common

AMBIGUITY OF LEAFLET IMAGED ON 2D

RV inflow view

Apical 4-chamber view
Comprehensive Two-Dimensional Interrogation of the Tricuspid Valve Using Knowledge Derived from Three-Dimensional Echocardiography

Basal SAX view

Aorta and single leaflet

Aorta and two leaflets

LVOT/septum and two leaflets

RVIF view

2D view with septum

2D view without septum
Post LVAD study

RV inflow view

Post LVAD study

RV inflow view #1

Mild TR

Severe TR
MECHANISMS OF TRICUSPID REGURGITATION

Primary (or “Organic”)
Intrinsic abnormality of the valve apparatus
15-30%* of TR

Secondary (or “Functional”)
TV annular dilatation, RV dilatation and papillary muscle displacement
70-85%* of TR

Antunes MJ, Barlow JB, Heart 2007
Primary/Organic TR – PPM/ICD Device Location

26 year-old with dilated cardiomyopathy on the transplant list

ICD inserted and echo performed 8 days later

Pre-ICD

RA perspective

Post-ICD

COMMISSURE: CORRECT POSITION

A:

Postero-septal
Antero-posterior
Middle
Antero-septal
• **Primary (Organic) TR – Pacemaker/ICD**

89 year-old man with right heart failure
Past medical history: CAD, MV repair; TAVI in 2009
 • Permanent pacemaker implantation post TAVI for bradycardia
POSTERIOR TV LEAFLET PERFORATION

PACEMAKER ADHERENCE
FUNCTIONAL TRICUSPID REGURGITATION

Chronic PE, Lung disease
RV ischemia, VOL, CM
Left-sided valve disease
Atrial fibrillation
L-R shunt

70-85%* of TR

TA dilatation
RV enlargement
PM displacement
TV tethering

Dreyfus G. J Am Coll Cardiol 2015;65:2331–6

TRICUSPID VALVE ≠ MITRAL VALVE

- Different valve orifices
- Different subvalvular apparatuses
- Different ventricles

Yet TR and MR are assessed in similar ways
ASE GUIDELINES AND STANDARDS

Recommendations for Noninvasive Evaluation of Native Valvular Regurgitation

A Report from the American Society of Echocardiography Developed in Collaboration with the Society for Cardiovascular Magnetic Resonance

William A. Zoghbi, MD, FASE (Chair), David Adams, RCS, RDGS, FASE, Robert O. Borow, MD, Maureen Enriquez-Sarano, MD, Elyse Foster, MD, FASE, Paul A. Grayburn, MD, FASE, Rebecca T. Hahn, MD, FASE, Yuchi Han, MD, MMSc, Judy Hung, MD, FASE, Roberto M. Lang, MD, FASE, Stephen H. Little, MD, FASE, Dipan J. Shah, MD, MMSc, Stanton Sherman, MD, FASE, Paaladineshi Thavendiranathan, MD, MSc, FASE, James D. Thomas, MD, FASE, and Neil J. Weissman, MD, FASE, Houston and Dallas, Texas; Durham, North Carolina; Chicago, Illinois; Rochester, Minnesota; San Francisco, California; New York, New York; Philadelphia, Pennsylvania; Boston, Massachusetts; Toronto, Ontario, Canada; and Washington, DC

JASE 2017

GRADING OF TRICUSPID REGURGITATION SEVERITY

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TV and RA size</td>
<td>Usually normal</td>
<td>Normal or mild dilation</td>
<td>Usually dilated</td>
</tr>
<tr>
<td>RV size</td>
<td>Normal < 2 cm</td>
<td>Normal or mildly dilated 2.1-2.5 cm</td>
<td>Dilated > 2.5 cm</td>
</tr>
<tr>
<td>Structural</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Color flow jet area</td>
<td>Small, narrow, central</td>
<td>Moderate central</td>
<td>Large central jet or eccentric wall-impinging jet of variable size</td>
</tr>
<tr>
<td>Flow convergence zone</td>
<td>Not visible, transient or small</td>
<td>Intermediate in size and duration</td>
<td>Large throughout systole</td>
</tr>
<tr>
<td>Semi-quantitative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Color flow jet area (cm²)</td>
<td>Not defined</td>
<td>Not defined</td>
<td>>10</td>
</tr>
<tr>
<td>VCV (cm²)</td>
<td><0.3</td>
<td>0.3-0.69</td>
<td>>0.7</td>
</tr>
<tr>
<td>PISA radius (cm²)</td>
<td>≤0.5</td>
<td>0.6-0.9</td>
<td>>0.9</td>
</tr>
<tr>
<td>Hepatic vein flow</td>
<td>Systolic dominance</td>
<td>Systolic blunting</td>
<td>Systolic flow reversal</td>
</tr>
<tr>
<td>Tricuspid inflow</td>
<td>A-wave dominant</td>
<td>Variable</td>
<td>E-wave >1.6 m/s</td>
</tr>
<tr>
<td>Color flow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERDA (cm²)</td>
<td><0.20</td>
<td>0.20-0.35</td>
<td>≥0.40</td>
</tr>
<tr>
<td>RVal GD PISA (ml)</td>
<td><20</td>
<td>20-44</td>
<td>≥45</td>
</tr>
</tbody>
</table>

JASE 2017
TRICUSPID VALVE ≠ MITRAL VALVE

64 year-old man with a NICM

LVEF – 20%

TR IS LOAD DEPENDENT

9 months ago - CHF

Now - No CHF

Functional TR

- Tricuspid annulus dilatation may be a more reliable indicator of TV pathology than degree of regurgitation
- Good correlation between TA diameter and TR regurgitant volume

TR varies depending on preload, afterload, RV function
TRICUSPID VALVE ≠ MITRAL VALVE

Pre and post peritoneal dialysis

Normal tricuspid annular dimension

TR depends on respiratory phase

Topilsky Y et al. Circulation 2010;122

<table>
<thead>
<tr>
<th>Variable</th>
<th>Expiration</th>
<th>Inspiration</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>RV diastolic area, cm²</td>
<td>26.5 (21.1–31.9)</td>
<td>27.8 (22.6–36.3)</td>
<td><0.0001</td>
</tr>
<tr>
<td>RV systolic area, cm²</td>
<td>16 (12.9–26.4)</td>
<td>16.0 (13.4–27.4)</td>
<td>0.003</td>
</tr>
<tr>
<td>RV area shortening fraction, %</td>
<td>33.4 (17.8–47.5)</td>
<td>33.4 (20.9–48.7)</td>
<td>0.37</td>
</tr>
<tr>
<td>RV diastolic length, cm</td>
<td>6.9 (5.5–7.7)</td>
<td>6.9 (5.5–7.9)</td>
<td>0.55</td>
</tr>
<tr>
<td>RV diastolic midventricular width, cm</td>
<td>4.1 (3.4–4.7)</td>
<td>4.5 (3.8–5.1)</td>
<td><0.0001</td>
</tr>
<tr>
<td>RV diastolic length/width ratio</td>
<td>1.7 (1.4–2.1)</td>
<td>1.6 (1.37–1.90)</td>
<td><0.0001</td>
</tr>
<tr>
<td>RA volume, ml</td>
<td>85.8 (52.7–132.3)</td>
<td>89 (51.7–128.5)</td>
<td>0.36</td>
</tr>
<tr>
<td>Systolic annulus diameter, mm</td>
<td>2.9 (2.7–3.6)</td>
<td>3.1 (2.7–3.8)</td>
<td>0.003</td>
</tr>
<tr>
<td>Diastolic annulus diameter, mm</td>
<td>3.7 (3.4–4.3)</td>
<td>3.9 (3.5–4.4)</td>
<td>0.01</td>
</tr>
<tr>
<td>Systolic vascular/annular coverage, %</td>
<td>104 (94–110)</td>
<td>100 (93–109)</td>
<td>0.006</td>
</tr>
<tr>
<td>Tenting height, cm</td>
<td>0.7 (0.53–0.92)</td>
<td>0.92 (0.74–1.2)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Tenting area, cm²</td>
<td>1.1 (0.66–1.5)</td>
<td>1.4 (1.15–1.7)</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

TA = 51 mm

TA = 55 mm
Functional TR and annular dilatation

The annulus is dilated if it measures
1. > 40 mm or > 21 mm/m² on 2D transthoracic echocardiography
 – Apical 4-chamber view
 – In diastole
2. > 70 mm on direct intraoperative measurement

ESC/EACTS Guidelines for management of VHD EHJ 2012
ACC/AHA Guidelines for management of VHD JACC 2014

IMPORTANCE OF THE TRICUSPID ANNULUS

- Performing tricuspid annuloplasty based on TA dilatation rather than TR degree results in improved surgical outcome

Despite a sicker MV + TV repair group...

<table>
<thead>
<tr>
<th></th>
<th>MV + TV repair</th>
<th>MV repair only</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survival @ 10 years</td>
<td>90.3%</td>
<td>85.5%</td>
<td>p=NS</td>
</tr>
<tr>
<td>Grade III-IV TR</td>
<td>1%</td>
<td>34%</td>
<td>p<0.001</td>
</tr>
<tr>
<td>Class III-IV CHF</td>
<td>0%</td>
<td>14%</td>
<td>P < 0.01</td>
</tr>
</tbody>
</table>

Should Measurements of the Tricuspid Annulus be Performed Using Two-Dimensional Echocardiography?

• TA size measured by 2D echocardiography should be interpreted with caution because it is underestimated by both 2D TTE and TEE.

ROLE FOR 3D ECHOCARDIOGRAPHY

• Better approximation of septal-lateral dimension
• Also allows measurement of antero-posterior dimension

Addetia K, Muraru D, Veronisi F, Badano LP, Lang RM et al. work in progress
On the horizon…

3D Echo

TRICUSPID ANNULUS

- Saddle-shaped
 - High points antero-posterior
 - Low points medial-lateral
- Ellipsoid shape

From side
FUNCTIONAL TRICUSPID REGURGITATION

- TA dilatation occurs mostly along the RV free-wall
- Septal portion of the tricuspid annulus relatively fixed

Dreyfus et al. ATS 2005

With worsening TR, the annulus becomes larger, rounder and flatter

Narain et al. J Am Coll Cardiol 2012
MECHANISMS OF TRICUSPIPID REGURGITATION

TR is highly dependent on annular dilatation, with significant TR occurring with only 40% dilatation, whereas it was seen at 75% dilatation in vitro MV studies. i.e. the TV leaks earlier that the MV

The ACC/AHA 2014 Guidelines

TA dilated if >40 mm in apical 4-chamber view

Tricuspid Regurgitation

- Progressive functional TR (stage B)
- Asymptomatic severe TR (stage C)
- Symptomatic severe TR (stage D)

TV Repair (Ia)
TV Repair (Ib)
TV Repair or TVR (I)
TV Repair or TVR (IIa)
TV Repair or TVR (II)
Pre-operative TR, TV tethering distance and TV tethering area were independent predictors of residual TR after annuloplasty. Tethering distance 0.76 cm and tethering area 1.63 cm² had the best AUC (0.88 and 0.87 respectively)
MECHANISMS OF TRICUSPID REGURGITATION

TV tenting volume by 3DE (accounting for both enlarged annulus area and leaflet tenting) is the major determinant of residual functional TR after annuloplasty.

Min SY et al. Eur Heart J 2010
NEW DIRECTIONS: EVALUATION OF FTR
A MORE COMPREHENSIVE APPROACH

Dreyfus et. al. JACC 2015

ON THE HORIZON...

Muraru D…et. al. European Heart Journal Cardiovascular Imaging
Thank you!

BEWARE... THE ULTRASOUND BEAM OFTEN ELICITS FINDINGS THE HISTORY AND PHYSICAL EXAM CANNOT...