
Case Studies: Evaluating Post-TAVR PVL

Stephen H. Little, MD John S. Dunn Chair in Cardiovascular Research and Education, Associate professor, Weill Cornell Medicine

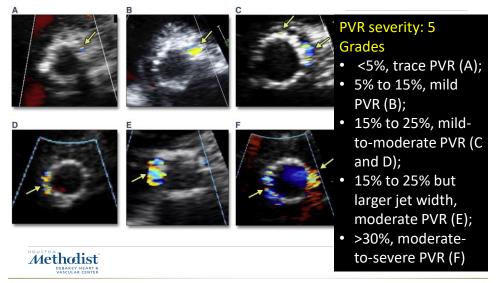
VARC – 2 Definitions: PVL Quantification

		Prosthet	tic aortic valve regurgit	ation	
		Mild	Moderate	Severe	
Semiquantitative parameters Diastolic flow reversal in the descen Circumferential extent of prosthetic regurgitation (%)99	6	Absent or brief early diastolic $$<\!10\%$$	Intermediate 10%-29%	Prominent, holodiastolic ≥30%	
Quantitative parameters; Regurgitant volume (mL/beat) Regurgitant fraction (%) EROA (cm ²)		<30 mL <30% 0.10 cm ²	30-59 mL 30-49% 0.10-0.29 cm ²	$\begin{array}{c} \geq \! 60 \text{ mL} \\ \geq \! 50\% \\ \geq \! 0.30 \text{ cm}^2 \end{array}$	
3D Short -Axis	the for • Do cou <u>he</u>	apted from e guideline [•] surgical A es not nsider the <u>ight</u> of the R jet	s VR	10-209	ate PVR
Methodist Disekty HARTA Viscula Center		J Thorac (Cardiovasc	Surg 2013;145	5:6-23

JACC: CARDIOVASCULAR IMAGING © 2015 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER INC. VOL. 8, NO. 3, 2015 ISSN 1936-878X/\$36.00 http://dx.doi.org/10.1016/j.jcmg.2015.01.008

Assessment of Paravalvular Regurgitation Following TAVR

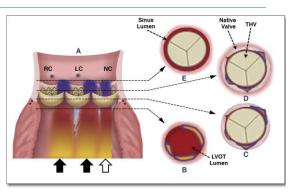
A Proposal of Unifying Grading Scheme


Philippe Pibarot, DVM, PHD,* Rebecca T. Hahn, MD,† Neil J. Weissman, MD,‡ Mark J. Monaghan, PHD§

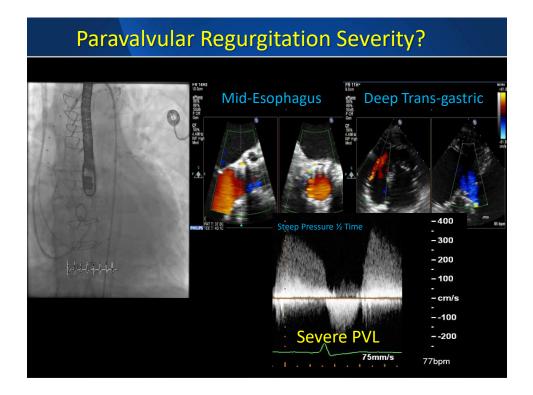
JACC: CARDIOVASCULAR IMAGING CME

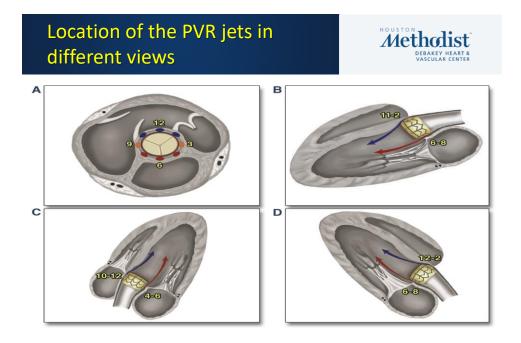
Methodist DEBAKEY HEART & VASCULAR CENTER

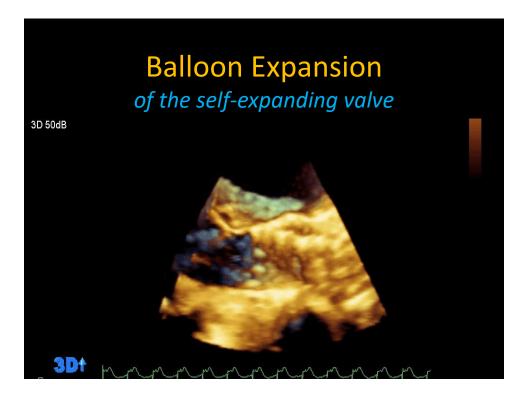
Assessment of Paravalvular Regurgitation Following TAVR: A Proposal of Unifying Grading Scheme

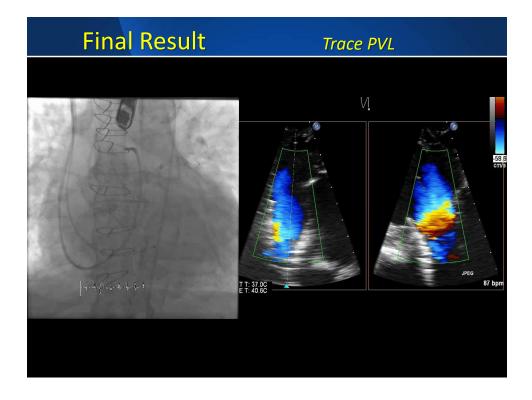


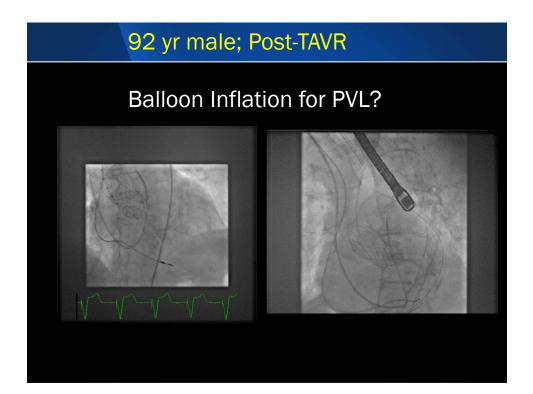
Assessment of Paravalvular Regurgitation Following TAVR: A Proposal of Unifying Grading Scheme

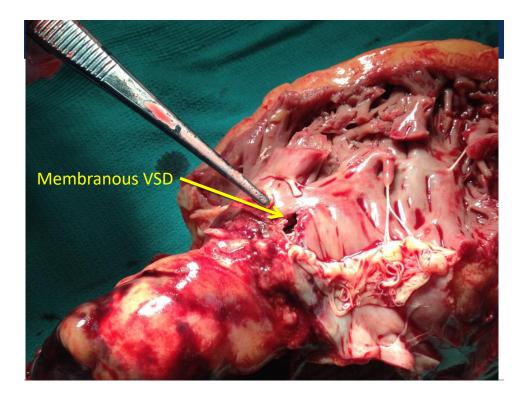

Doppler Echo

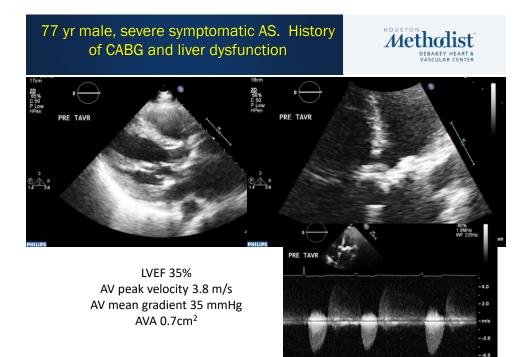

- Color (VCA, circumferential extent, jet length)
- Pulse wave (Holodiastolic flow reversal, LVOT/RVOT SV)
- Beware the many limitations (shielding, Doppler angle)

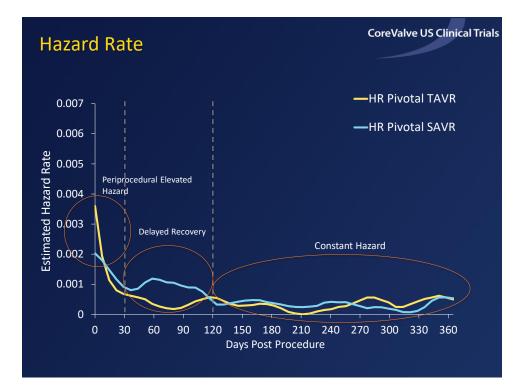

Methodist DEBAKEY HEART & VASCULAR CENTER

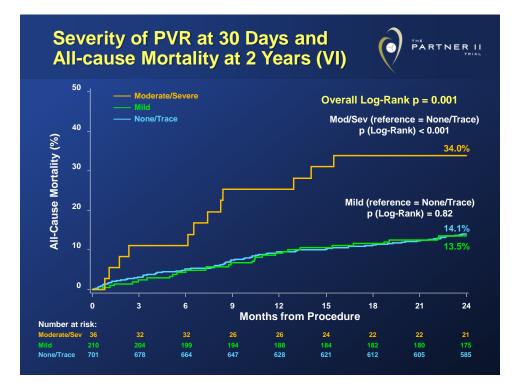

J Am Coll Cardiol Img. 2015;8(3)



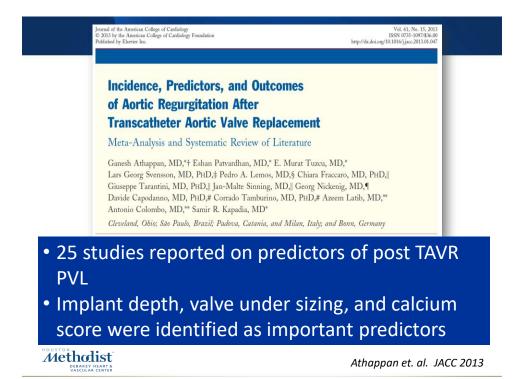



J Am Coll Cardiol Img. 2015;8(3)


Persistent dyspnea after TAVR


TEE done prior to hospital discharge

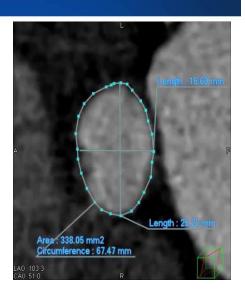
Mild to moderate PVL reported


Methodist

<section-header><section-header>

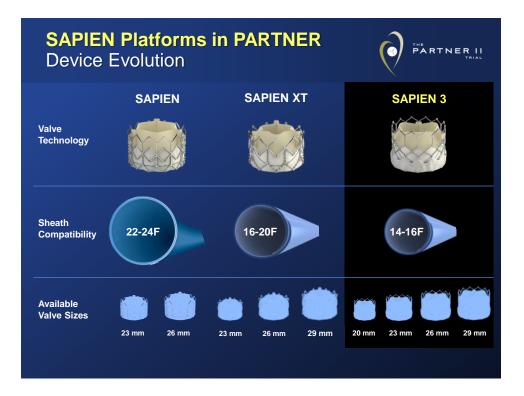
After TAVR #1

No change in symptoms. Persistent restrictive diastolic filling indices


After TAVR #2

<u>CT Data</u> :	Valve Size	Aortic Annulus Diameter	Ascending Aorta Diameter	Sinus of Valsalva Diameter	Native Leaflet to Sinutubular Junction Length	Perimeter Measuremen
Aortic annulus:	23	18 mm – 20 mm	≤ 34 mm	≥ 25 mm	≥ 15mm	56.5 mm – 62.8 mm
84 mm perimeter	26	20 mm – 23 mm	≤ 40 mm	≥ 27 mm	≥ 15mm	62.8 mm – 72.3 mm
	29	23 mm – 27 mm	≤ 43 mm	≥ 29 mm	≥ 15mm	72.3 mm – 84.8 mm
29 mm CoreValve:	31 ^{50dB} P Off	26 mm – 29 mm	≤ 43 mm	≥ 29 mm	≥ 15mm	81.6 mm – 91.1 mm
9 mm inflow diameter Perimeter = 29 x 3.14 91mm/84mm = 1.08 = <u>8% cover index</u> 15-20% is ideal	Gen CF 59% 4.4MHz Med P P R					

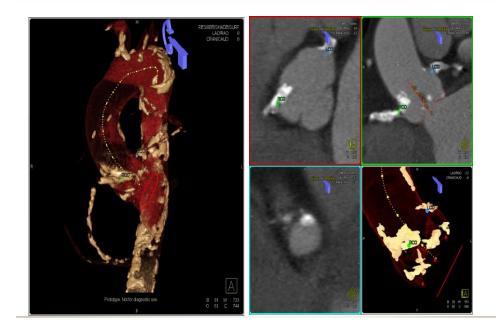
Importance of Correct Valve Size


The Dynamic Annulus

4D multidetector CT image of the aortic annulus in a patient with severe aortic stenosis shows change in measurements during the cardiac cycle.

Masri A, Schoenhagen P, Svensson L, Kapadia S, Griffin B, Tuzcu M, Desai M. J Thorac Cardiovasc Surg 2014;147:1847-54.

3D Imaging Considerations



- Under sizing increases the risk of PVL.
- The "virtual" annulus is non-circular.
- Single linear measurements (whether directly measured or derived) are less accurate.
- Sizing algorithms for each valve have been defined.
- 3D imaging techniques must be used to accurately measure the annulus.

It's less important which 3D imaging tool is used!

Methodist DEBAKEY HEART & VASCULAR CENTER

The Hostile Aorta- Turbulent Flight & Landing

Para-Valvular Regurgitation after TAVR

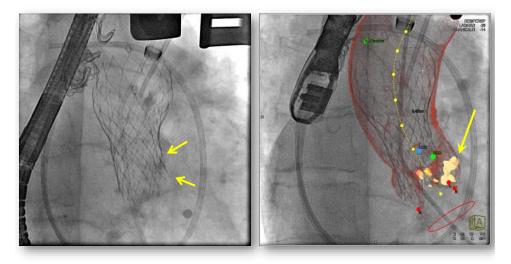
Correlation of Device Landing Zone Calcification and Acute Procedural Success in Patients Undergoing Transcatheter Aortic Valve Implantations With the Self-Expanding CoreValve Prosthesis

Daniel John, MD, Lutz Buellesfeld, MD, Seyrani Yuecel, MD, Ralf Mueller, MD, Georg Latsios, MD, Harald Beucher, MD, Ulrich Gerckens, MD, Eberhard Grube, MD

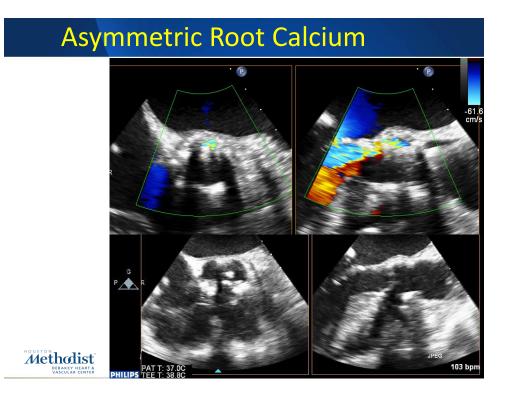
Siegburg, Germany

Methods:

- 100 pts with CoreValve TAVR
- MSCT to assess calcium load in valve and adjacent LVOT
- Calcium levels correlated with PVL by angio and TTE (2 weeks later)

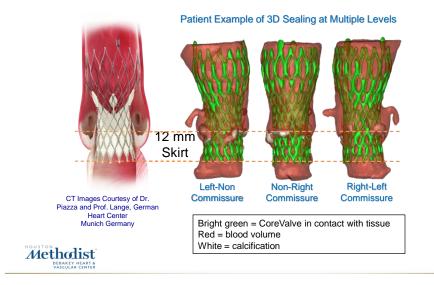

John D, Buellesfeld L, Yuecel S, et al; JACC Intv 2010;3:23-43

Landing Zone Concerns

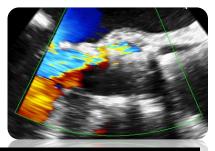


Methodist DEBAKEY HEART & VASCULAR CENTER

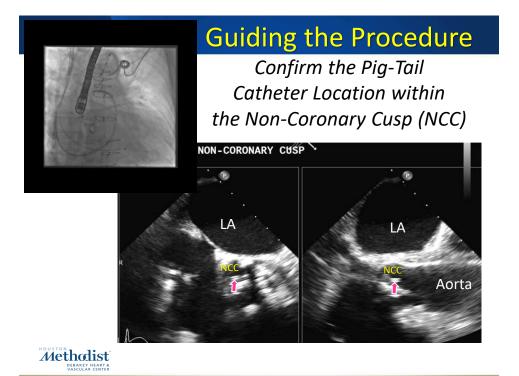
Immediately after Valve deployment

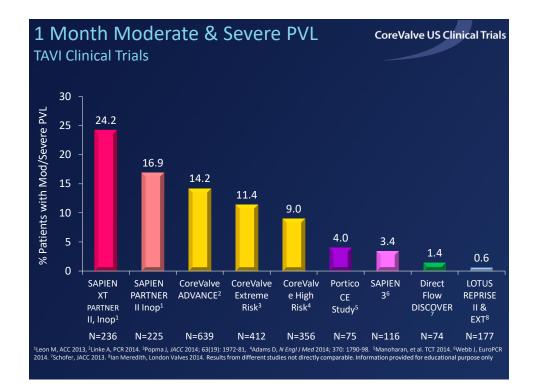


Metholist DEBAKEY HEART & VASCULAR CENTER


Sealing at Multiple Levels

CoreValve System: sealing can occur along the 12mm sealing skirt—in the aortic root, annulus, and LVOT—including above and below calcification




Implantation Depth

- PVL is influenced significantly by implant depth.
- A low CoreValve implantation associated with an OR of 3.67 for moderate or severe AR. (Takagi et al.)
- Sherif et al. optimal device depth 9.5mm (from the NCC)
- Jilaihawi et al. optimal device depth 5- to 10-mm

Valve positioning is based mainly on fluoroscopy with or without echo guidance. Choosing the correct fluoroscopic plane is critical.

Clinical Presentation

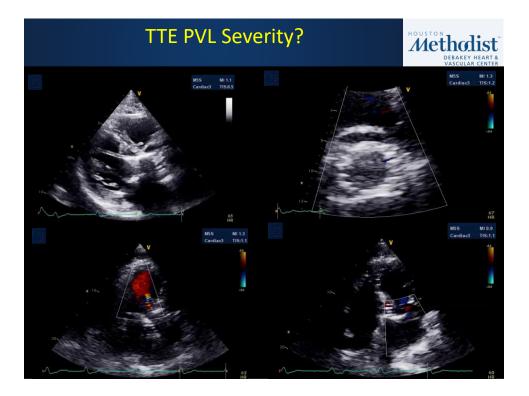
91 year old man with severe AS

- TAVR 1 month prior
- Now with new onset DOE, NYHA 3

PMHx:

 CAD, Dyslipidemia, HTN, Atrial fibrillation, Pacemaker (prior to TAVR)

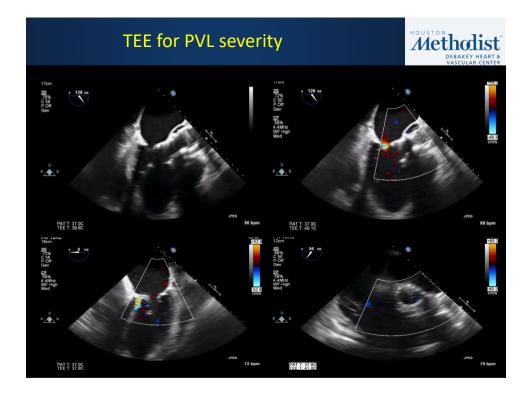
Medications:

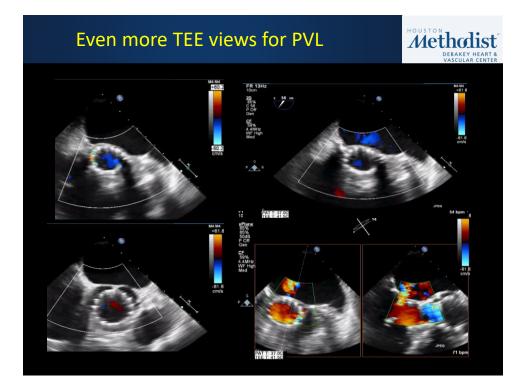

Furosemide, simvastatin, digoxin, apixaban

Clinical Presentation

Physical Exam:

- BP 154/64, HR 67, RR 18, T 96.7, O2 97% R/A
- No Jugular venous distension, ascites, or peripheral edema
- Decreased breath sounds to bases
- 2/4 diastolic murmur

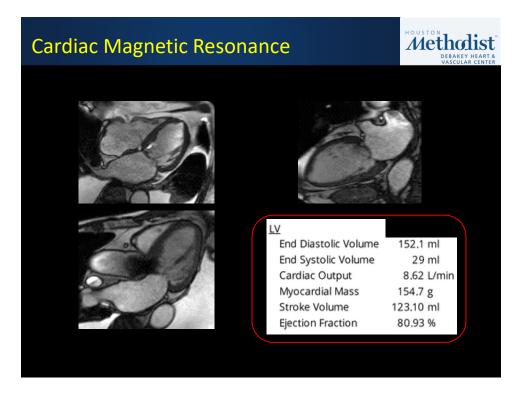

Transthoracic Echocardiogram

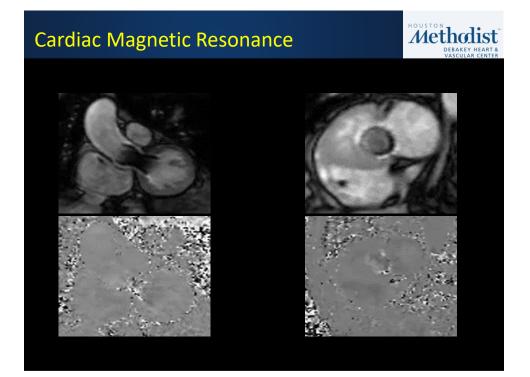


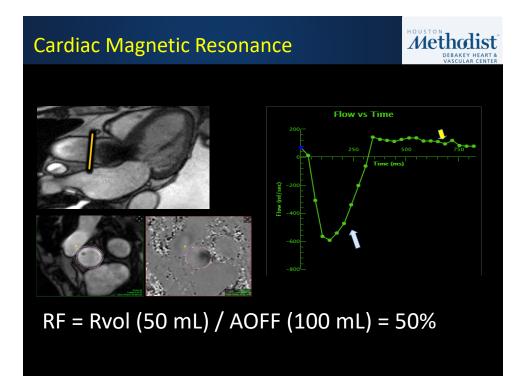
Findings

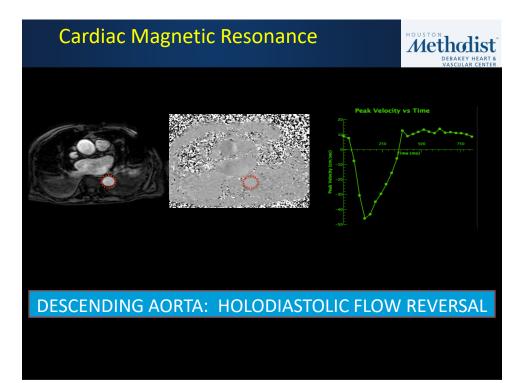
	B ⁻
LV:	LV size is normal LV function is normal. Overall wall motion is normal. Estimated EF is 60-64%.
RV:	RV size is normal. RV function is normal.
LA:	LA size is enlarged.
RA:	RA size is enlarged.
AO:	Aortic root is mildly enlarged.
PERI:	No pericardial effusion.
PLE:	Pleural effusion is present.
AV:	Bioprosthetic aortic valve. Normal prosthetic valve velocity and gradient. Doppler velocity index is 0.57. Mild
	perivalvular aortic reguritation
MV:	Moderate thickening and calcification of mitral leaflets. Moderate mitral annular calcification. Thickened and/or
	calcified chordae. Mild mitral regurgitation.
PV:	Pulmonic valve not well seen. A trace of pulmonic regurgitation.
TV:	No structural TV abnormalities noted. A trace of tricuspid regurgitation
Other:	Estimated PA systolic pressure is 30 mmHg, assuming a mean RAP of 5 mmHg.

Parasternal 1							
Ao Rtd VSd LVIDd	3.9 cm 1.1 cm 5 cm	LV%fs LVPWd LA Ds	49.2 % 0.9 cm 3.9 cm	AV For Flow AV pkVel AV mnVel	200.1 cm/s 113.9 cm/s	AV AC/ET AV TVI	0.3 29.9 cm
LVIDs	2.5 cm	LVOT	2.2 cm	AV pkPG AV Mean G AV AC	16 mmHg 6.9 mmHg 79 msec	AVpkAcRt AV DeRt AV Area	2629.8 cm/s ² 761.3 cm/s ² 2.9 cm ²
				AV ET	263 msec	AT AG	2.5 611
				LVOI For F	3.8 cm ²	LVOT SV	88.1 ml
				LVOTARea	113.9 cm/s	HR	59.9 bpm
				LVOTpkPG	5.2 mmHg	LVOT CO	5.3 1/min
				LVOTmnPG LVOT TVI	2.7 mmHg 23.2 cm	LVOT CI	2.7 l/m/m ²






Transesophageal Echocardiogram



LV:	LV size is normal LV function is normal. Overall wall motion is normal. 3D volumetric LVEF is 62%.
RV:	RV size is normal. RV function is normal.
LA:	LA size is enlarged. No thrombus or mass is visualized in the LA or LA appendage. Spontaneou echo contrast is seen in the LA/LA appendage.
RA:	RA size is enlarged.
AO:	Mild atherosclerotic changes seen in the aortic arch and descending aorta.
PERI:	No pericardial effusion.
IAS:	Atrial septum is normal.
AV:	Bioprosthetic Core Valve is visualized.Placement appears lower in LVOT. Mild paravalvular aortic regurgitation with 2 jets located anterior and posteriorly (view 37).
MV:	Moderate thickening and calcification of mitral leaflets. Mild mitral annular calcification. Mild to moderate mitral regurgitation.
PV:	No structural PV abnormalities noted.
TV:	No structural TV abnormalities noted.

Cardiac Magnetic Resonance Report

Methodist

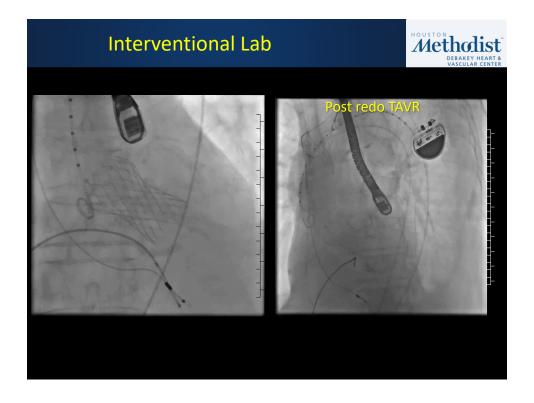
- 1. Normal LV and RV sizes. Severe bi-atrial enlargement. NO thrombus in LA or RA appendages.
- 2. Hyperdynamic LV and normal RV systolic function (LVEF 81%, RVEF 50%).
- 3. Subendocardial scarring in the basal-mid anterolateral wall, total scar burden 2%.

4. <u>Self expanding transcatheter valve in low aortic/LVOT position</u>. <u>Severe paravalvular aortic regurgitation</u> (RV 50 ml, RF 50%) with holodiastolic flow reversal in the descending aorta. Position of bioprosthesis limits anterior mitral leaflet excursion resulting in mild mitral stenosis (planimetered MVA 2.0 cm2). <u>Mild-</u> moderate mitral regurgitation (RV 23 ml, RF 32%).

5. Enlarged ascending aorta (4.5 cm) without dissection. Enlarged pulmonary artery (MPA 3.0 cm). Normal pulmonary venous anatomy.

6. Large bilateral pleural effusions. Small inferior pericardial effusion.

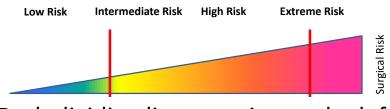
FINAL IMPRESSION: SELF EXPANDING TRANSCATHETER IN LOW AORTIC/LVOT POSITION WITH SEVERE PARAVALVULAR AORTIC REGURGITATION. MILD-MODERATE MITRAL REGURGITATION.


Clinical Decision Making

Clinical Summary

- 91M NYHA III
- Post-TAVR (Core Valve) 1 month ago

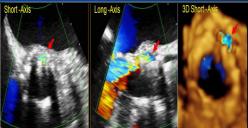
CMR Findings


- Low implant in LVOT
- Severe (RF 50%)paravalvular AI with holodiastolic reversal
- Mild-moderate mitral regurgitation

PREDICTIONS FOR 2020

All risk categories will be TAVR candidates

Both dividing lines moving to the left


In Summary

STATE-OF-THE-ART PAPER

Paravalvular Leak After Transcatheter Aortic Valve Replacement

The New Achilles' Heel? A Comprehensive Review of the Literature

Philippe Genéreon, MD,⁺⁺ Stuart J. Head, MSC,⁵ Rebecca Hahn, MD,⁺⁺ Benoit Daneault, MD,⁺ Suskeel Kodhi, MD,⁺ Mathew R. Williams, MD,⁺ Nicolas M. van Mieghem, MD,[†] Maria C. Ahu, MM,⁺ Parick W. Serruys, MD, PHD,[†] A. Pieter Kappetein, MD, PHD,⁵ Martin B. Leon, MD⁺ New York. New York: Mentrial, Outloc. Canada: and Ratteriam. the Netherlands

- Underestimation of PAR with may be significant.
- Accurate annulus sizing is a key step to prevent PVR.
- 3D imaging is superior to 2-D imaging techniques.
- Innovations designed to improve sealing.
- Improvement in the range of available device sizes, accurate annular sizing, and precise positioning will help minimize AR after TAVR.

Stephen H. Little MD shlittle@houstonmethodist.org

Metholist DEBAKEY HEART& VASCULAR CENTER