Myocardial Contrast Echo

Anthony DeMaria

Myocardial Contrast Echocardiography: Problems and Potential

Anthony DeMaria MD
Judith and Jack White Chair
Founding Director, Sulpizio Cardiovascular Center
University of California, San Diego
Immedicate Past Editor, JACC

Grantee, SAB, Sponsored Speaker,
Ad hoc Consultant
Virtually All Ultrasound Instrument and Contrast
Companies

CONTRAST ECHO

- Effective contrast agents
- Refined recording techniques
- LV cavity opacification
- Doppler enhancement
- Myocardial perfusion
- Delivery of markers, drugs, therapy

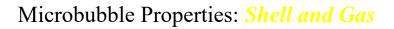
Contrast for LV Opacification

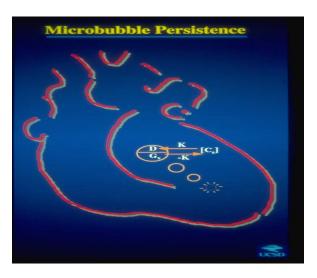
LV Opacification Echo Other Than Border Definition

- Cardiac Shunts
- Doppler enhancement
- Cardiac Masses
 - Tumor vs Clot
- 3D enhancement
- Noncompaction
- Vascular enhancement

Proverb

'It is dangerous to have great potential for too long a time.'


Applications of MCE in CAD


- Risk area or infarct size with MI
- Reperfusion efficacy
- No-reflow phenomenon
- Myocardial viability
- Coronary collateral flow
- Coronary artery stenosis
- Coronary flow reserve
- Targeted marker or drug delivery

Myocardial contrast echocardiography has not yet achieved use as a <u>clinical</u> <u>tool</u>.

Why?

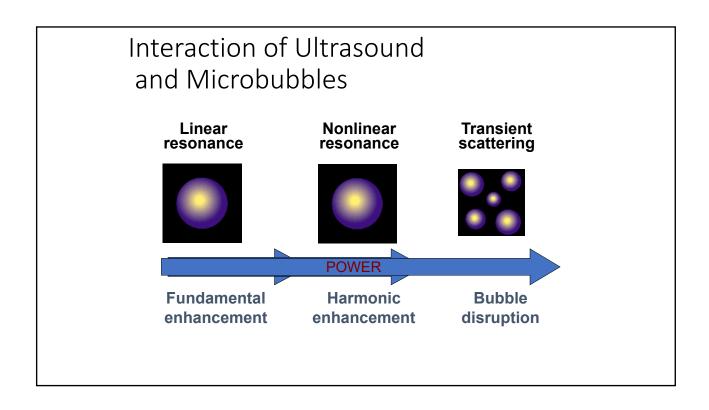
Ultrasound contrast agents have been very difficult to successfully develop and market

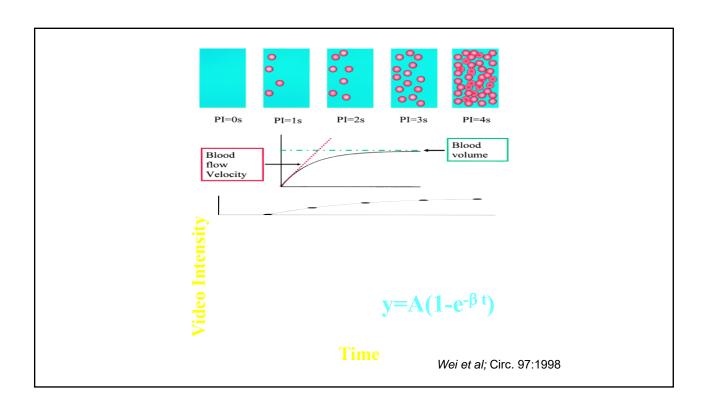
Contrast Agent Properties

Agent	Mean Size (u)	<u>Gas</u>	Shell
Levovist	2-3	Air	(Galactose)
Optison	4.7	Perflouropropane	albumin
Definity	1.5	Perflouropropane	phospholipid
Imagent	5.0	Perflourohexane-N	Surfactant
Lumason (Sonovue)	2.5	Sulfur hexaflouride	Phospholipid
Cardiosphere	4.0	Nitrogen	Polymer
Acusphere	2.0	Perflourocarbon	Polymer

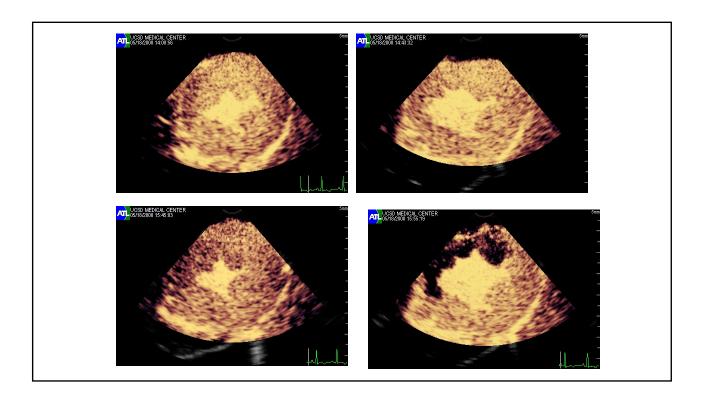
Contrast Recording Techniques

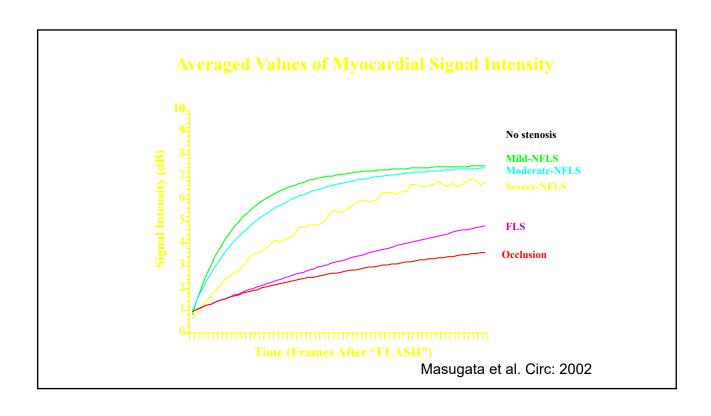
high

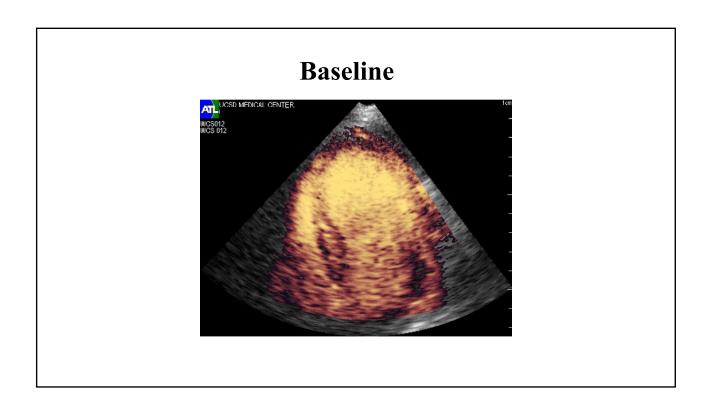

- <u>Destructive</u> energy, unipulse
 - Most sensitive
 - Triggered, no motion
 - Can get tissue signals
- Power Doppler
- Ultraharmonics


- Non-destructive low energy, multipulse
 - Real-time, motion
 - Ease of use
 - Less sensitivity
- Non-linearity methods
 - Pulse inversion
 - Power modulation
 - Coherent imaging

Contrast Echo is not Contrast


- White blood volume signal superimposed upon white tissue
- Techniques needed to differentiate microbubbles from tissue
 - ECG gating
 - Harmonics
 - Non-linear signals
 - Bubble destruction (refill imaging)


Bubbles Produce Harmonic Signals SCHROPE ET AL (1) Nonlinear **Bubble** 7.5 5.0 10.0 FREQUENCY (MHz) (6) Linear Tissue 5.0 7.5 10.0 FREQUENCY (MHz)



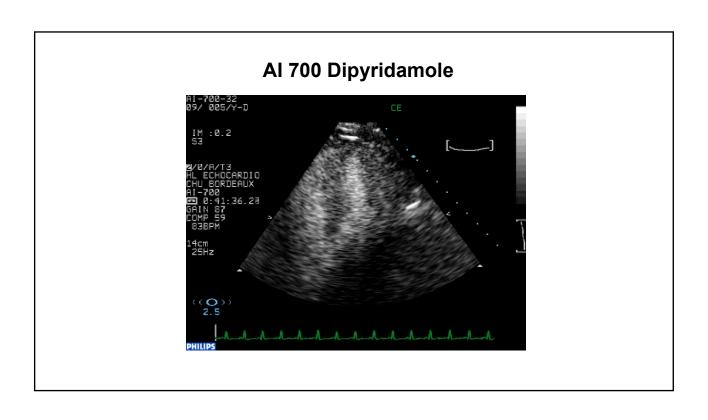
Contrast perfusion defects are time dependent

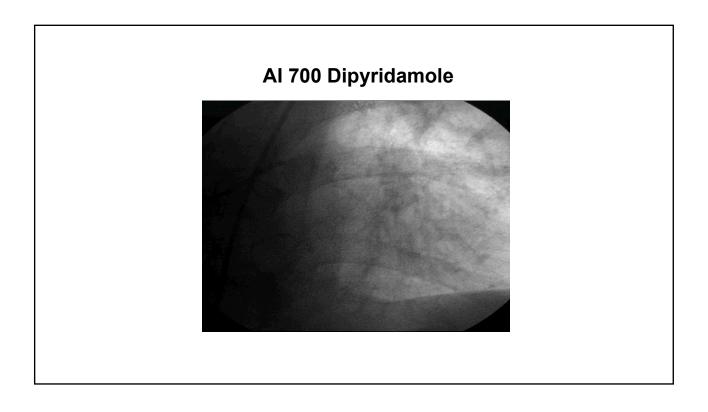
Refilling Sequence All Frames Adenosine

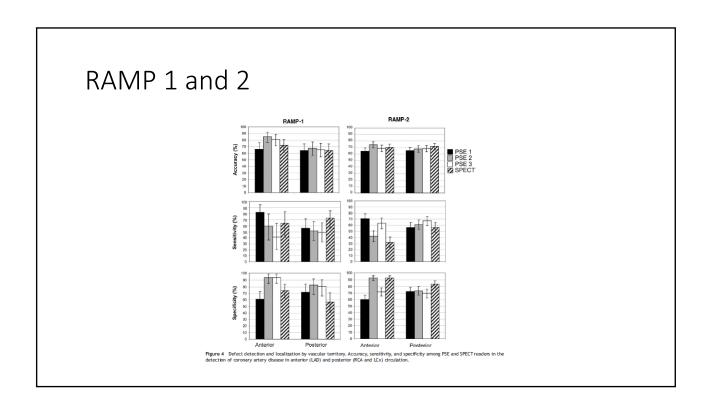
Detection of Myocardial Ischemia/Coronary Stenosis by MCE

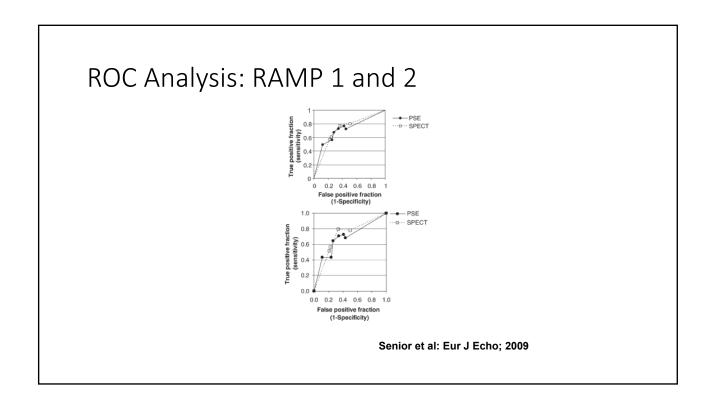
Study	Year	Pts	MCE Mode	Stress Method	Criterion Standard	Sensiti vity	Specifi city	Concorda nce	Kap pa
Kaul	1997	30	High MI	dipyridamole	SPECT	-	-	86%	0.71
Porter	1997	28	High MI	dipyridamole	SPECT	92%	84%	84%	-
Heinle	2000	123	High MI	adenosine	SPECT	-	-	81%	0.60
Cwajg	2000	45	Low MI	exercise/dipyri damole	Angiography	-	-	80%	0.61
Shimoni	2001	100	low MI	exercise	SPECT	-	-	76%	0.50
Shimoni	2001	44	low MI	exercise	Angiography	75%	100%		0.67
Porter	2001	117	low MI	dobutamine	dobutamine stress echocardiogram	-	-	91%	0.70
Porter	2001	40	low MI	dobutamine	Angiography	-	-	83%	0.65
Oraby	2001	27	high MI	dobutamine	SPECT	-	-	82%	0.49
Haluska	2001	49	high MI	doutamine	SPECT	83%	55%	-	-
Wei	2003	43	high MI	doutamine	SPECT	96%	63%	84%	0.63

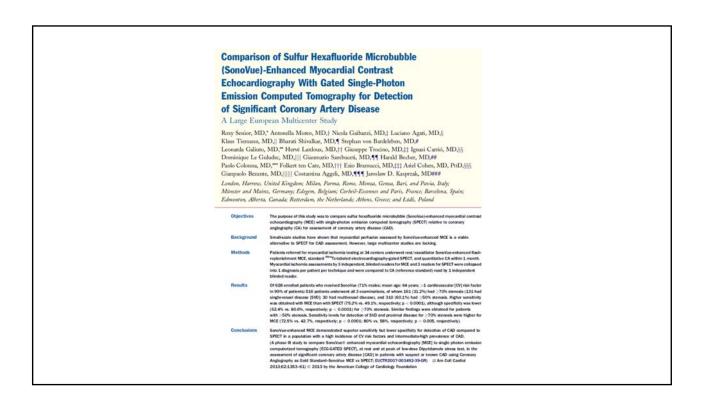
CLINICAL/ORIGINAL PAPER

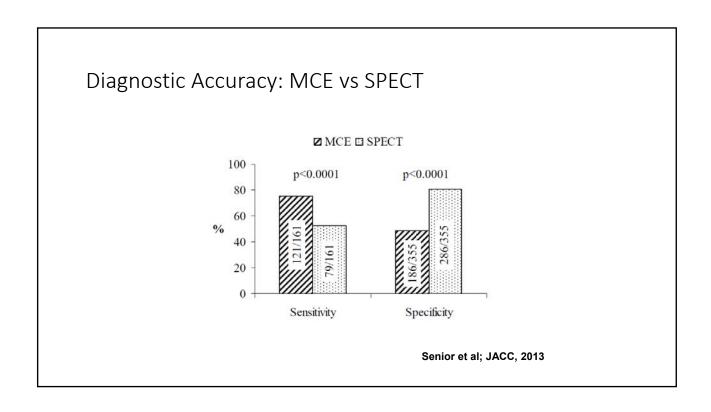

Detection of coronary artery disease with perfusion stress echocardiography using a novel ultrasound imaging agent: two Phase 3 international trials in comparison with radionuclide perfusion imaging


Roxy Senior^{1*}, Mark Monaghan², Michael L. Main³, Jose L. Zamorano⁴, Klaus Tiemann⁵, Luciano Agati⁶, Neil J. Weissman⁷, Allan L. Klein⁸, Thomas H. Marwick⁹, Masood Ahmad¹⁰, Anthony N. DeMaria¹¹, Miguel Zabalgoitia¹², Harald Becher¹³, Sanjiv Kaul¹⁴, James E. Udelson¹⁵, Frans J. Wackers¹⁶, Richard C. Walovitch¹⁷, and Michael H. Picard¹⁸, for the RAMP-1 and RAMP-2 Investigators

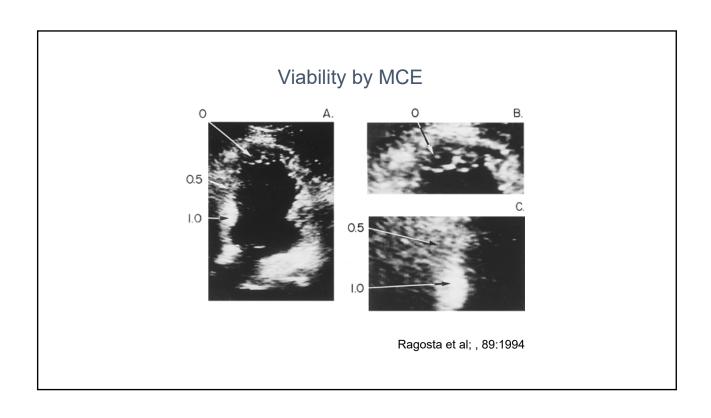

RAMP 1 and 2


Real time assessment of myocardial perfusion


- Imagify is perflubutane polymer microspheres (poly-D,L-lactide-co glycolide and phospholipid)
- Used both real-time and gated ultraharmonic imaging
- · Core laboratories for all images
 - 3 echo and 1 nuclear reader compared
- Stenosis as 70% and global jeopardy score
- 652 pts enrolled; approximately 53% CAD
- · Non-inferiority design







MCE vs Spect

- 513 pts with known or suspected CAD
- Sulphur hexaflouride continuous infusion
- Dipyridamole stress with destroy/refill
- SPECT and cor angio in standard fashion
- 3 expert readers for each: collapsed into 1
- MCE + if no stress refill by after 4 cycles
- SPECT by visual assessment
- Non-inferiority design

MCE for Myocardial Viability Post MI

Authors	Imaging type	Sensitivity (%)	Specificity (%)	Pts
Janardhanan (2005)	Low MI	82	83	42
Hickman (2005)	Low MI	83	78	56
Senior (2003)	High MI	62	85	96
Greavea (2003)	Low MI	88	74	15
Aggeli (2003)	High MI	87	72	34
Janardhanan (2003)	Low MI	92	75	50
Hillia (2003)	Low MI	86	44	33
Hillis (2003)	High MI	80	67	38
Lepper (2002)	High MI	94	87	35
Main (2001)	Low MI	77	83	34
	N	lean 83	75	(n 430)

Why is MCE Not Clinical?

- Images still inadequate in difficult patients
- Pulsing sequences still complex
- No agreed upon protocol exists
- Quantitation still has limited reproducibility
- Few multicenter studies are published
- No reimbursement