The Athlete's Heart

Critical Role of Echo

Neil J. Weissman, MD

MedStar Health Research Institute & Professor of Medicine Georgetown University

Washington, D.C.

Disclosures

Grant support (to institution) for Core Lab activities:

- Abbott Vascular
- Boston Scientific
- Biotronic
- Edwards LifeScience
- Medtronic
- Sorin/ LivaNova

For a full list, visit www.EchoCoreLab.org

MASSACHUSETTS GENERAL HOSPITAL HEART CENTER

Special Thanks to:

Malissa J. Wood, MD FACC FASE

Co-director Women's Heart Health Program

Massachusetts General Hospital

and

Ankit Shah, MD FACC FASE

Director, Sports & Performance Cardiology MedStar Heart & Vascular Institute

Outline

- Principles of Exercise-induced Cardiac Remodeling

 Endurance vs. Strength training
- Healthy vs. Diseased (Athlete's heart vs. pathology)
 - 1. LV chamber enlargement
 - 2. RV chamber enlargement
 - 3. Aortic dilatation
 - 4. LV wall thickening (gray zone hypertrophy)
- Is there a role for Echo in Screening Athletes?
 - Identification and Prevention of Sudden Cardiac Death

Background: Sport-Specific Physiology

Endurance Activities

Sustained ↑ CO • 4 to 5 times rest

- ↑ ↑ ↑ HR & ↑ SV
- Vasodilation

Strength Activities

Repetitive↑ SBP • Systolic BP > 200 mmHg • Skeletal Muscle Contraction

•↑ LV Afterload

Sport Classification

Exercise-Induced Cardiac Remodeling

Uncertainty #1: LV Dilatation 1309 Athletes in Diverse Sports (soccor, gymnastic, rowing)

Pelliccia et al. Ann Intern Med 1999;130:23.

LV Chamber Enlargement

Table 4 Echocardiographic findings from the study population of university athletes								
	Male (n = 300) Female (n = 197)							
Parameter	Normal (n = 209)	Physiologic remodeling (n = 91)	Normal (n = 178)	Physiologic remodeling (n = 19)				
Structural parameters								
Interventricular septal thickness (mm)	9.8 ± 0.9	11.6 ± 0.5	8.3 ± 0.7*	$10.6 \pm 0.5^{\dagger}$				
LV posterior wall thickness (mm)	10.0 ± 1.2	11.8 ± 1.4	8.6 ± 1.1*	$10.7 \pm 0.7^{\dagger}$				
LV inner dimension at end-diastole (mm)	51 ± 3	57 ± 5	42 ± 4*	$54 \pm 4^{\dagger}$				
LA diameter (mm)	36 ± 4	40 ± 4	32 ± 3*	38 ± 4				
RV end-diastolic diameter (mm)	30 ± 5	36 ± 3	28 ± 4*	$33 \pm 3^{\dagger}$				
Functional parameters								
LV ejection fraction (%)	65 ± 7	58 ± 4	68 ± 6	$64 \pm 6^{+}$				
Transmitral E wave (cm/sec)	86 + 16	96 + 13	81 + 17	88 + 12				
25% of US college athletes exceed gender recommended LVIDd limit								
LA, Left atrial; PW, pulsed-wave.								
Data are expressed as mean ± SD.								
* $P < .05$ for comparison with male athletes in the * $P < .05$ for comparison with male athletes in the	normal cardiac st physiologic remo	ructure and function group. deling group.						

Weiner et al. J Am Soc Echocardiogr 2012;25:568.

MASSACHUSETTS GENERAL HOSPITAL HEART CENTER

orphology	
IV(Sd (mm)) 8−13 0.2	
10.05	10
LVIDd (mm) 49–65 42–5	59
LVIV (9)	224
	455
(inc) 150-240 0i	
LV EF (%) >3	55
Side Dopen	6
(cm/sec) 7.5–16	8
echanical parameter	
Strain/strain rate Similar to nonathletes GLS > (GLS > -18%)	-18%

LV Adaptation in Endurance Athletes

• Physiologic:

- Expected with endurance training.
- Accompanied by proportionate increase in LV mass (Eccentric LVH).
- Accompanied by normal to low normal resting LVEF (~50%).
 - TDI / Strain assessment with preserved or enhanced function.
- Usually accompanied by "other" chamber enlargement (RV, LA).
- LVIDd absolute"cut-offs" are not helpful.
- When in doubt, exercise testing is very useful (confirm LV augmentation and document supranormal exercise capacity).

Uncertainty #2: RV Chamber Enlargement/Function

2

0

30

Cut off for abnormal of

RV inflow (mm)

Figure 2 Range of values for RV inflow dimension in endurance athletes (n = 102).

ording to ASE guidelines

102 Endurance Athletes from the UK

0+ 20

Oxborough et al. J Am Soc Echocardiogr 2012;25:263.

Cut

30

RV outflow (mm)

Figure 3 Range of values for RV proximal outflow dimension in endurance athletes (*n* = 102).

40

ding to ASE guidelin

8

RV Function-Olympic Speedskaters

	Baseline	Post-exertion	<i>P</i> Value
Ea (cm/sec)	13.5±3.6	15.2±5.8	0.041
Aa (cm/sec)	8.6±1.5	9.2±3.0	0.47
RV Area change	0.35 ± 0.13	0.43 ± 0.13	0.007
Strain Apex (%)	-30±8	-29±7	0.66
SR Apex (s ⁻¹)	-1.8±0.5	-2.5±1.2	0.038

Poh KK, Int J Cardiol 2008

Right Ventricular Remodeling in Elite Athletes

37 30

Table 4.Upper Reference Values for Right VentricularMeasurements in Athletes, Corrected for Sex and BodySurface Area

	Male Athletes	Female Athletes
RAA, cm2 (cm2/m2)	28 (14)	24 (13)
RVEDA, cm2 (cm2/m2)	39 (19)	32 (18)
RVOTP, mm (mm/m2)	40 (20)	37 (21)
RVOT1, mm (mm/m2)	43 (22)	40 (23)
RVOT2, mm (mm/m2)	32 (17)	29 (16)
RVD1, mm (mm/m2)	55 (28)	49 (28)
RVD2, mm (mm/m2)	47 (24)	43 (25)
RVD3, mm (mm/m2)	109 (56)	100 (57)
RVWT, mm (mm/m2)	6 (3)	5 (3)

9

RV Adaptations to training

Physiologic:

- RV enlargement expected with endurance training.
 - Global RV process without sacculation, aneurysmal dilation, segmental dysfunction, or fibrosis.
- RV dimensions absolute "cut-offs" are not usually helpful.
- Almost always associated with LV remodeling (concomitant LV enlargement but no RVH).
- May be accompanied by normal to low normal resting FAC / RVEF.
 - TDI / Strain assessment should be preserved or enhanced function.
 - · If in doubt, comprehensive exercise testing
 - RV demonstrates contractile reserve

Uncertianty #3: Aorta's in Athletes

Aortic Root Size by Sport																					
Т	Table 4. And to Read Size According to Mitchell's Sport Classification in Males																				
	IA (m=117) IB (m=102) IC (m=380) IIA (m=30) IIB (m=222) IIC (m=360) IIIA (m=300) IIIB (m=83) IIIC (m=415)																				
	Male		Mean	P95	Mean	P95	Mean	P95	Mean	P95	Mean	P95	Mean	P95	Mean	P95	Mean	P95	Mean	P95	
	Aortic M mode, m	m	30±3.1	36.8	29.8±3.3	35.2	29.9±2.8	34.6	29.9±3.7	36.4	29.8±3.1	36	31.6±3.7	38.9	29.5±3	35	30.1±3.3	36.1	30.6±3.1	35.9	
	Aortic annulus, mr	m	25.2+9	20.5	23.7±2.9	29.1	25.4+9	30.3	25.2±3.2	31.4	24.9±3.3	31.1	26.6±3.5	32.7	24 6+2 8	28.0	24.7±2.8	28.8	26+9.1	91.4	
	Sinuses of Valsalv	ra, mm	31.3±3.4	38.9	30.6 ± 3.6	37	31.3±3.1	36.4	31.4±3.9	37.9	31.4±3.8	38.2	32.9 ± 3.8	39.9	30.7±3.3	36.6	31±3.1	36.5	32±3.4	37.9	
	Sinotubular junctio	on, mm	26.4±3.	3 32.1	25.3±3.3	30.3	26.2±2.9	31.3	26.1±3.4	31.7	26±3.5	32	27.5±3.6	33.5	25.5±3	30.7	26±3	30.7	27±3.3	32.8	
	Drostmal accordin	a aorta mm	00 0.10	33.6	96 6 4 9 4		96 649	a a	26 0		56 5.5 6	35.6	30.24	36.1	95 0.49 9	94.6	00 0 4 9 9	44	37 8.4 9 8	33.6	
Aort	tic ro	ot w	as I	ar	aer	in	SD	or	ts w	/ith	hi hi	ah	l dv	'na	ami	СС	com	DO	one	ent	in i
		· · · · ·			9.0.							3.	,								
bot	th say	VAC	hut	2	AD		ft 🗤	on	tric	uls	ar m	າລ		an	d R	S	$\Delta \lambda \lambda \prime$	٥r	ho m	າລ່	in
			υαι,	- CU	\mathbf{y}		1 L V V		UIU	uic		IC I	55		чD	U			Сп	IC	
					y .																
					ر مطا	-+-	o ro	of	~~~	+: -	، الم	~ ~		:	~~						
			,	pr	edi	cto	ors	of	aor	tic	c dir	me	ens	io	าร						
			,	pr	edi	cto	ors	of	aor	tic	c dir	ne	ens	ioı	าร						
				pr	edi	cto	ors	of	aor	tic	c dir	ne	ens	ioı	าร						
	Fomalo		IA (n=7	Dr	edi ^{IB (n=8}			Of		tic		21)		208)	IIIA (n=2	85)	IIIB (n=6	34) P05	IIIC (n=1	63) Po5	
ļ	Female Aortic M mode, mi	m	IA (n=7 Mean 25.5±2.5	5) P95 30.2	B (n=8 Mean 26.5±2.6	1) 1) 1) 1) 1) 1) 1) 1) 1) 10 20 20 20 20 20 20 20 20 20 20 20 20 20	IC (n=2 Mean 25.5±2.4	Of 225) P95 29,8	aoi IIA (n=: Mean 25.2±2.7	20) P95 30.9	IIB (n=1 Mean 25.8±2.5	21) P95 30.2	IIC (n=2 Mean 26.9±2.8	208) P95 31.8	111A (n=2 Mean 25.1±2.5	85) P95 29.8	IIIB (n=6 Mean 25.4±2.2	34) P95 29.6	IIIC (n=1 Mean 26.2±2.2	63) P95 29.8	
ļ	Female Aortic M mode, mi Aortic annulus, mr	m	IA (n=7 Mean 25.5±2.5 21+2.7	5) P95 30.2	B (n=8 Mean 26.5±2.6 21.6±2.7	1) P95 30.2 26	IC (n=: Mean 25.5±2.4	Of 225) P95 29.8 26.1	IIA (n=: Mean 25.2±2.7 22±3.2	20) P95 30.9 27.7	IIB (n=1 Mean 25.8±2.5 21.4±2.5	21) P95 30.2 26.1	IIC (n=: Mean 26.9±2.8 22.7±2.7	208) P95 31.8 27.4	IIIA (n=2 Mean 25.1±2.5 21+2.4	85) P95 29.8	IIIB (n=6 Mean 25.4±2.2 21.2±2.5	34) P95 29.6 26.2	liiC (n=1 Mean 26.2±2.2 21.9+2.9	63) P95 29.8 27.3	
	Female Aortic M mode, mi Aortic annulus, mi Sinuses of Valsalva	m m a, mm	IA (n=7 Mean 25.5±2.5 21+2 7 26.2±2.4	5) P95 30.2 25.4 30.3	IB (n=8 Mean 26.5±2.6 21.6±2.7 27.7±3.2	1) P95 30.2 26 33.2	IC (n=: Mean 25.5±2.4 21.4±2.5 26.9±2.7	225) P95 29.8 26.1 31.4	IIA (n=: Mean 25.2±2.7 22±3.2 26.4±2.5	20) P95 30.9 27.7 30.9	B (n=1 Mean 25.8±2.5 21.4±2.5 27±2.8	21) P95 30.2 26.1 32	IIC (n=) Mean 26.9±2.8 22.7±2.7 28.4±2.9	208) P95 31.8 27.4 33.1	IIIA (n=2 Mean 25.1±2.5 21+2.4 26.5±2.6	85) P95 29.8 25.2 30.9	IIIB (n=6 Mean 25.4±2.2 21.2±2.5 26.8±2.8	34) P95 29.6 26.2 32.8	IIIC (n=1 Mean 26.2±2.2 21.9±2.9 27.6±2.9	63) P95 29.8 27.3 32.1	
	Female Aortic M mode, mr Aortic annulus, mr Sinuses of Valsatv Sinotubular junctic	m m a, mm on, mm	IA (n=7 Mean 25.5±2.5 21+2 7 26.2±2.4 22.7±2.6	P 95 30.2 25.4 30.3 20.9	B (n=8 Mean 26.5±2.6 21.6±2.7 27.7±3.2 23.5±3	1) P95 30.2 26 33.2 28.6	IC (n=2 Mean 25.5±2.4 21.4±2.5 26.9±2.7 22.8±2.8	225) P95 29.8 26.1 31.4 27	IIA (n=2 Mean 25.2±2.7 22±3.2 26.4±2.5 22.2±2.6	20) P95 30.9 27.7 30.9 26.7	IIB (n=1 Mean 25.8±2.5 21.4±2.5 27±2.8 22.9±2.6	21) P95 30.2 26.1 32 27.5	IIC (n=3 Mean 26.9±2.8 22.7±2.7 28.4±2.9 24.1±2.5	208) P95 31.8 27.4 33.1 28.4	IIIA (n=2 Mean 25.1±2.5 21+2.4 26.5±2.6 zz.4±2.0	85) P95 29.8 25.2 30.9 20.7	IIIB (n=0 Mean 25.4±2.2 21.2±2.5 26.8±2.8 23±2.7	64) P95 29.6 26.2 32.8 32.8	IIIC (n=1 Mean 26.2±2.2 21.9±2.9 27.6±2.9 23.2±2.8	63) P95 29.8 27.3 32.1 28.5	
	Female Aortic M mode, mi Aortic annulus, mir Sinuses of Valsalvis Sinotubular junctic Proximal ascendin	m m a, mm on, mm ng aorta, mm	IA (n=7 Mean 25.5±2.5 21+2 7 26.2±2.4 22.7±2.6 22.9±3.1	5) P95 30.2 25.4 30.3 20.9 28.4	B (n=8 Mean 26.5±2.6 21.6±2.7 27.7±3.2 23.5±3 22.8±3.1	1) P95 30.2 26 33.2 28.6 29.2	IC (n=3 Mean 25.5±2.4 21.4±2.5 26.9±2.7 22.8±2.8 23.2±3.1	Of P95 29.8 26.1 31.4 27 28.2	IIA (n=: Mean 25.2±2.7 22±3.2 26.4±2.5 22.2±2.6 22.2±2.9	20) P95 30.9 27.7 30.9 26.7 28	IIB (n=1 Mean 25.8±2.5 21.4±2.5 27±2.8 22.9±2.6 23.4±2.9	21) P95 30.2 26.1 32 27.5 28	IIC (n=: Mean 26.9±2.8 22.7±2.7 28.4±2.9 24.1±2.5 24.8±3	2008) P95 31.8 27.4 33.1 28.4 29.7	IIIA (n=2 Mean 25.1±2.5 21+2.4 26.5±2.6 22.9±2.9	85) P95 29.8 25.2 30.9 20.7 27.4	IIIB (n=0 Mean 25.4±2.2 21.2±2.5 26.8±2.8 23±2.7 23.3±3.1	34) P95 29.6 26.2 32.8 27.4 28.1	liiC (n=1 Mean 26.2±2.2 21.9±2.9 27.6±2.9 23.2±2.0 23.8±3.2	63) P95 29.8 27.3 32.1 28.3 28.8	
	Female Aortic M mode, mi Aortic annulus, mr Sinuses of Valsalvi Sinotubiar junctic Proximal accondin Aortic M mode/BS	m m a, mm on, mm g aorta, mm iA, mm/m ²	IA (n=7 Mean 25.5±2.5 21+2 7 26.2±2.4 22.7±2.0 22.9±3.1 15.5±1.5	5) P95 30.2 25.4 30.3 20.9 28.4 18.1	B (n=8 Mean 26.5±2.6 21.6±2.7 27.7±3.2 23.5±3 22.8±3.1 15±1.6	1) P95 30.2 26 33.2 28.6 29.2 18.4	C (n=: Mean 25.5±2.4 21.4±2.5 26.9±2.7 22.8±2.6 23.2±3.1 15.8±1.7	P95 29.8 26.1 31.4 27 28.2 18.7	IIA (n=2 Mean 25.2±2.7 22±3.2 26.4±2.5 22.2±2.6 22.2±2.9 14.9±1.4	20) P95 30.9 27.7 30.9 26.7 28 17.9	IIB (n=1 Mean 25.8±2.5 21.4±2.5 27±2.8 22.9±2.6 23.4±2.9 15.2±1.5	21) P95 30.2 26.1 32 27.5 28 17.7	IIC (n=: Mean 26.9±2.8 22.7±2.7 28.4±2.9 24.1±2.5 24.8±3 15.2±1.6	P95 31.8 27.4 33.1 28.4 29.7 17.8	IIIA (n=2 Mean 25.1±2.5 21+2.4 26.5±2.6 z.4±2.6 22.9±2.9 15.4±1.6	85) P95 29.8 25.2 30.9 20.7 27.4 18.3	IIB (n=0 Mean 25.4:2.2 21.2:2.5 26.8:2:4 23:2:7 23.3:3:1 15.6:±1.4	34) P95 29.6 26.2 32.8 27.4 28.1 17.8	IIIC (n=1 Mean 26.2±2.2 21.9±2.9 27.6±2.9 23.2±2.0 23.8±3.2 15.8±1.5	63) P95 29.8 27.3 32.1 28.3 28.8 18.6	
	Female Aortic M mode, mi Aortic annulus, mi Sinuses of Valsalva Sinutusar junctic Proximal ascendin Aortic M mode/ISS Aortic annulus/BS/	m m a, mm on, mm g aorta, mm A, mm/m ² A, mm/m ²	IA (n=7 Mean 25.5±2.5 21+27 26.2±2.4 22.7±2.0 22.9±3.1 15.5±1.5 12.9±2.1	P 95 30.2 25.4 30.3 20.9 28.4 18.1 16.7	IB (n=8 Mean 26.5±2.6 21.6±2.7 27.7±3.2 23.5±3 22.8±3.1 15±1.6 12.3±1.4	1) P95 30.2 26 33.2 28.6 29.2 18.4 15.3	C (n=2 Mean 25.5±2.4 21.4±2.5 26.9±2.7 22.0±2.8 23.2±3.1 15.8±1.7 13.3±1.8	P95 29.8 26.1 31.4 27 28.2 18.7 16.4	IIA (n=2 Mean 25.2±2.7 22.4±2.5 22.2±2.6 22.2±2.9 14.9±1.4 13±1.7	20) P95 30.9 27.7 30.9 26.7 28 17.9 15.4	B (n=1 Mean 25.8±2.5 27±2.8 22.9±2.6 23.4±2.9 15.2±1.5 12.7±1.6	21) P95 30.2 26.1 32 27.5 28 17.7 15.6	BCS IIC (n=2 Mean 20.9±2.8 22.7±2.7 28.4±2.9 24.1±2.5 24.8±3 15.2±1.6 12.9±1.6	2008) P95 31.8 27.4 33.1 28.4 29.7 17.8 15.4	IIA (n=2 Mean 25.1±2.5 21±2.4 26.5±2.6 22.9±2.9 15.4±1.6 12.9±1.6	85) P95 29.8 25.2 30.9 20.7 27.4 18.3 15.7	IIIB (n=0 Mean 25.4:2:2 21.2:2:5 26.8:2:3 23:2:7 23.3:3:1 15.6:±1.4 13.1:±1.6	34) P95 29.6 26.2 32.8 27.4 28.1 17.8 15.8	IIIC (n=1 Mean 26.2±2.2 21.9±2.9 27.6±2.9 23.2±2.8 23.8±3.2 15.8±1.5 13.2±1.9	63) P95 29.8 27.3 32.1 28.8 28.8 18.6 16.7	
	Female Aortic M mode, mr Aortic annular, mr Sinoteo Valsalvi Sinotubular Junctic Proximal accordin Aortic Annulaur/BSA Sinuses of Valsalvi Sinuses of Valsalvi	m a, mm a, mm ga orta, mm A, mm/m ² A/, mm/m ² a/BSA, mm/m ²	IA (n=7 Mean 25.5±2.5 21+2 7 26.2±2.4 22.7±2.0 22.9±3.1 15.5±1.5 12.9±2.1 16±1.8	5) P95 30.2 25.4 30.3 20.9 28.4 18.1 16.7 19.2	IB (n=8 Mean 26.5±2.6 21.6±2.7 27.7±3 23.5±3 15±1.6 15±1.6 15±1.6 12.3±1.4 15.7±1.9	1) P95 30.2 26 33.2 28.6 29.2 18.4 15.3 19.4	C (n=2 Mean 25.5±2.4 21.4±2.5 26.9±2.7 22.0±2.8 23.2±3.1 15.8±1.7 13.3±1.8 16.7±2	P95 29.8 26.1 31.4 27 28.2 18.7 16.4 20.1	AOI Mean 25.2±2.7 22±3.2 26.4±2.5 22.2±2.0 22.2±2.0 14.9±1.4 13±1.7 15.6±1.5	20) P95 30.9 27.7 30.9 26.7 28 17.9 15.4 18.9	B Control 100 (n=1) Mean 26.8±2.5 27±2.8 22.9±2.6 23.4±2.9 15.2±1.5 12.7±1.6 16±1.7	21) P95 30.2 26.1 32 27.5 28 17.7 15.6 18.9	HC (n=2) Mean 20.9±2.8 22.7±2.7 28.4±2.9 24.1±2.5 24.8±3 15.2±1.6 12.9±1.6 16.1±1.7	P95 31.8 27.4 33.1 28.4 29.7 17.8 15.4 19	IIA (n=2 Mean 25.1±2.5 21+2.4 26.5±2.6 22.9±2.0 22.9±2.0 15.4±1.6 15.4±1.6 15.4±1.6	85) P95 29.8 25.2 30.9 20.7 27.4 18.3 15.7 19	IIIB (n=(Mean 25.4±2.2 21.2±2.5 26.4±2.2 23.4±2.3 23.4±3.1 15.6±1.4 13.1±1.6	34) P95 29.6 26.2 32.8 27.4 28.1 17.8 15.8 19.2	IIIC (n=1 Mean 26.2±2.2 21.9±2.9 27.6±2.9 23.2±2.8 23.8±3.2 15.8±1.5 13.2±1.9 16.6±2.1	63) P95 29.8 27.3 32.1 28.3 18.6 16.7 20.6	
	Female Aortic M mode, mi Sinuses of Valsalvi Sinotubular Junctic Proximal ascendin Aortic M mode/BS Aortic annulue/BS/ Sinuses of Valsalvi Sinotubular Junctic	m a, mm on, mm bg aorta, mm A, mm/m ² A/BSA, mm/m ² on/BSA, mm/m ²	IA (n=7 Mean 25.5±2.5 21+2 7 26.2±2.4 22.9±2.1 15.5±1.5 12.9±2.1 16±1.8 13.9±1.9	5) P95 30.2 25.4 30.3 20.9 28.4 18.1 16.7 19.2 16.9	IB (n=8 Mean 26.5±2.6 21.6±2.7 27.7±3.2 23.5±3 15±1.6 15±1.6 15±1.6 15±1.4 15±1.9 13.4±1.7	1) P95 30.2 26 33.2 28.6 29.2 18.4 15.3 19.4 16.3	IC (n=2 Mean 26.5±2.4 21.4±2.5 26.9±2.7 22.8±2.8 23.2±3.1 15.8±1.7 15.8±1.7 15.8±1.7 15.8±1.7 15.8±1.7 15.8±1.7 15.4±1.2	P95 29.8 26.1 31.4 27 28.2 18.7 16.4 20.1 17.5	AOI Mean 25.2±2.7 22±3.2 26.4±2.5 22.2±2.6 22.2±2.9 14.9±1.4 13±1.7 15.6±1.5 13.2±1.3	20) P95 30.9 27.7 30.9 26.7 28 17.9 15.4 18.9 14.9	IB (n=1 Mean 25.8±2.5 21.4±2.5 27±2.8 22.9±2.6 15.2±1.5 12.7±1.6 16±1.7 13.5±1.6	21) P95 30.2 26.1 32 27.5 28 17.7 15.6 18.9 16.2	IIC (n=2 Mean 26.9±2.8 22.7±2.7 28.4±2.9 24.1±2.5 24.8±3 15.2±1.6 15.2±1.6 15.2±1.6 15.2±1.6	 P95 31.8 27.4 33.1 28.4 29.7 17.8 15.4 19 16.2 	IIA (n=2 Mean 25.1±2.5 21±2.4 26.5±2.6 22.9±2.0 15.4±1.6 15.4±1.6 15.4±1.6 16.2±1.9 13.7±1.7	85) P95 29.8 25.2 30.9 20.7 27.4 18.3 15.7 19 16.6	IIIB (n=6 Mean 25.4±2.2 21.2±2.5 26.8±2.8 23.±2.1 15.6±1.4 13.1±1.6 16.5±1.7 14.2±1.7	94) P95 29.6 26.2 32.8 27.4 28.1 17.8 15.8 19.2 16.8	IIIC (n=1 Mean 26.2±2.2 21.9±2.0 27.6±2.9 23.8±3.2 15.8±1.5 13.2±1.9 16.6±2.1 14±1.9	63) P95 29.8 32.1 28.8 18.6 16.7 20.6 18	s
	Female Aortic A mode, m Aortic annulus, mr Sinotse of Valsalva Sinotubiar junctic Proximal accondin Aortic M mode/BS. Sinuses of Valsalva Sinuses of Valsalva Proximal accondin mrvm ²	m m a, mm ag aorta, mm A, mm/m ² A, mm/m ² a/BSA, mm/m ² a/BSA, mm/m ² g) aorta/BSA, mm/m ²	IA (n=7 Mean 25.5±2.6 21+27 26.2±2.4 22.9±3.1 15.5±1.5 12.9±2.1 16±1.8 13.9±1.9 14±2.1	5) P95 30.2 25.4 30.3 20.9 28.4 18.1 16.7 19.2 16.9 18.3	IB (n=8 Mean 26.5±2.6 21.6±2.7 27.7±3.2 23.5±3 22.8±3.1 15.7±1.9 13.4±1.7 13.5±1.8	1) P95 30.2 26 33.2 28.6 29.2 18.4 15.3 19.4 16.3 17.1	C (n=: Mean 26.5±2.4 21.4±25 26.9±2.7 22.03±0 23.2±3.1 15.8±1.7 13.3±1.8 16.7±2 14.1±2 14.4±2.1	P95 29.8 26.1 31.4 27 28.2 18.7 16.4 20.1 17.5 17.8	BACK IBA (n=: Man 25.2±2.7 22±3.2 26.4±2.5 22.2±2.6 22.2±2.6 22.2±2.6 22.2±2.6 14.9±1.4 13±1.7 15.6±1.5 13.2±1.3 13.1±1.6	20) P95 30.9 27.7 30.9 26.7 28 17.9 15.4 18.9 14.9 14.9 17.1	B (n=1 Mean 25.8±2.5 27±2.8 22.9±2.6 23.4±2.9 15.2±1.5 12.7±1.6 16±1.7 13.5±1.6 13.8±1.7	21) P95 30.2 26.1 32 27.5 28 17.7 15.6 18.9 16.2 16.4	IIC (n=2 Mean 26.9±2.8 22.7±2.7 28.4±2.9 24.1±2.5 24.8±3 15.2±1.6 16.1±1.7 13.7±1.5 14.1±1.8	 P95 31.8 27.4 33.1 28.4 29.7 17.8 15.4 19 16.2 17 	IIA (n=2 Mean 26.1±2.5 21=24 26.5±2.6 22.9±2.0 15.4±1.6 16.2±1.9 13.7±1.7 14±1.9	85) P95 29.8 25.2 30.9 20.7 27.4 18.3 15.7 19 16.6 16.9	IIIB (n=0) Mean 25.4±2.2 26.4±2.4 23.2±7 23.3±3.1 15.6±1.6 16.6±1.7 14.2±1.7	34) P95 29.6 26.2 32.8 27.4 28.1 17.8 15.8 19.2 16.8 18.4	IIIC (n=1 Mean 26.2±2.2 21.9±2 0 27.6±2.9 23.4±2.0 23.4±2.0 13.8±1.5 13.2±1.9 16.6±2.1 14±1.9 14.3±2.2	63) P95 29.8 27.1 32.1 28.5 28.8 18.6 16.7 20.6 18 18.2	S TAL

Aortic Root In Athletes

- Aortic root does not have same physiologic adaptation to training as other cardiac structures
- Aortic Root in healthy elite athletes is within established limits for the general population
- Marked dilation of the aortic root is not explained by height, BSA or training effect
- · Aortic root size in lifelong endurance masters athletes has not been studied

Uncertainty #4: Thick LV Walls

Least frequent but most problematic issue. Expected with strength (isometric) training.

Gray Zone LVH: 13 – 15 mm Challenge: distinguish EICR from HCM Especially since HCM is leading cause of exercise-related sudden death

Thic	k L۱	V V	/al l	S

$\frac{\operatorname{Male}(n=30)}{\operatorname{Parameter}} \underbrace{\operatorname{Female}(n=17)}_{(n=30)} \underbrace{\operatorname{Female}(n=17)}_{(n=17)} \underbrace{\operatorname{Physiologic remodeling}}_{(n=17)} \\ \underbrace{\operatorname{Normal}}_{(n=17)} \underbrace{\operatorname{Normal}}_{(n=17)} \\ \operatorname{N$	Table 4 Echocardiographic findings from	the study populat	ion of university athletes					
ParameterNormal (r = 20)Physiologic remodeling (r = 91)Normal (r = 178)Physiologic remodeling (r = 178)Structural parametersInterventicular septial thickness (mm) 0.8 ± 0.9 11.6 ± 0.5 $8.3 \pm 0.7^{\circ}$ $10.6 \pm 0.5^{\circ}$ LV posterior wall thickness (mm) 0.0 ± 1.2 11.8 ± 1.4 $8.6 \pm 1.1^{\circ}$ $10.7 \pm 0.7^{\circ}$ LV inter dimension at end-discoler (mm) 0.1 ± 3 0.7 ± 3 42 ± 4 0.9 ± 4 LA diameter (mm) 30 ± 5 36 ± 3 $28 \pm 4^{\circ}$ $33 \pm 3^{\circ}$ Functional parametersUeditional parametersULV ejector fraction (%) 66 ± 7 58 ± 4 68 ± 6 $64 \pm 6^{\circ}$ Transmitral F wave (cm/sec) 66 ± 16 96 ± 13 81 ± 12 78 ± 12 Transmitral F wave (cm/sec) 66 ± 16 96 ± 13 81 ± 17 88 ± 12 Transmitral F wave (cm/sec) 66 ± 16 96 ± 13 81 ± 17 88 ± 12 Transmitral F wave (cm/sec) 86 ± 16 96 ± 13 81 ± 17 88 ± 12 Transmitral F wave (cm/sec) 86 ± 16 96 ± 13 81 ± 17 88 ± 12 Transmitral F wave (cm/sec) 86 ± 16 96 ± 13 81 ± 17 88 ± 12 Transmitral F wave (cm/sec) 86 ± 16 96 ± 13 81 ± 12 81 ± 12 Transmitral F wave (cm/sec) 86 ± 16 96 ± 16 96 ± 16 96 ± 16 A dia transmitral F wave (cm/sec) 86 ± 16 96 ± 16 96 ± 16 96 ± 16 A dia transmitral F wave (cm/sec)		Male (n = 300) Female (n = 197)						
Structural parameters Interventricular septial thickness (mm) 9.8 ± 0.9 11.6 ± 0.5 8.3 ± 0.7' 10.6 ± 0.5 [†] LV posterior wall thickness (mm) 10.0 ± 1.2 11.8 ± 1.4 8.6 ± 1.1* 10.7 ± 0.7 [†] LV inter dimension at end-bascible (mm) 91.5 37.5 42.2.4 94.2.4 LA diameter (mm) 36 ± 4 40 ± 4 32 ± 3* 38 ± 4 RV end-diastolic diameter (mm) 30 ± 5 36 ± 3 28 ± 4* 33 ± 3† Functional parameters IV ejection fraction (%) 65 ± 7 58 ± 4 68 ± 6 64 ± 6† Transmitral E wave (cm/sec) 65 ± 16 96 ± 13 81 ± 17 88 ± 12 Transmitral E wave (cm/sec) 65 ± 16 96 ± 13 81 ± 17 88 ± 12 Transmitral E wave (cm/sec) 65 ± 16 96 ± 13 81 ± 17 88 ± 12 Transmitral E wave (cm/sec) 65 ± 16 96 ± 13 81 ± 17 88 ± 12 Transmitral E wave (cm/sec) 65 ± 16 96 ± 13 81 ± 17 88 ± 12 V A V 0.5 0.5 0.5 0.5 0.5 V = 0.5	Parameter	Normal (n = 209)	Physiologic remodeling (n = 91)	Normal (n = 178)	Physiologic remodeling (n = 19)			
Interventricular septal thickness (mm) 9.8 ± 0.9 11.6 ± 0.5 8.3 ± 0.7 10.6 ± 0.5 [†] LV posterior wall thickness (mm) 10.0 ± 1.2 11.8 ± 1.4 8.6 ± 1.1 10.7 ± 0.7 [†] LV inter dimension at end-bascole (mm) 36 ± 4 40 ± 4 32 ± 3 38 ± 4 RV end-diastolic diameter (mm) 36 ± 4 40 ± 4 32 ± 3 38 ± 4 RV end-diastolic diameter (mm) 30 ± 5 36 ± 3 28 ± 4 33 ± 3 [†] Functional parameters LV ejection fraction (%) 65 ± 7 58 ± 4 68 ± 6 64 ± 6 [†] Transmitral E wave (cm/sec) 86 ± 16 96 ± 13 81 ± 17 88 ± 12 Tra E Not a single healthy college athlete P A A A A A A A A A A A A A A A A A A A	Structural parameters							
LV posterior wall thickness (mm) 10.0 ± 1.2 11.8 ± 1.4 8.6 ± 1.1' 10.7 ± 0.7' LV inner ormersion at end-basicle (mm) 31 ± 3 37 ± 5 42 ± 4 34 ± 4' LA diameter (mm) 30 ± 5 36 ± 4 40 ± 4 32 ± 3' 38 ± 4 RV end-diastolic diameter (mm) 30 ± 5 36 ± 3 28 ± 4' 33 ± 3' Functional parameters LV ejection fraction (%) 65 ± 7 58 ± 4 68 ± 6 64 ± 6' Transmitral F wave (cm/sec) 86 ± 16 96 ± 13 81 ± 17 88 ± 12 Transmitral F wave (cm/sec) 86 ± 16 96 ± 13 81 ± 17 88 ± 12 Transmitral F wave (cm/sec) 86 ± 16 96 ± 13 81 ± 17 88 ± 12 LV ejection fraction (%) College athlete E K K LA Left atrial; PW, pulsed-wave. Data are expressed as mean ± SD. P < .05 for comparison with male athletes in the normal cardiac structure and function group. * P < .05 for comparison with male athletes in the physiologic remodeling group.	Interventricular septal thickness (mm)	9.8 ± 0.9	11.6 ± 0.5	8.3 ± 0.7*	$10.6 \pm 0.5^{\dagger}$			
Ly liner dimension at end-diasoble (mm) 31 ± 3 37 ± 5 42 ± 4 34 ± 4 LA diameter (mm) 36 ± 4 40 ± 4 $32 \pm 3^{\circ}$ 38 ± 4 Ry end-diasoblic diameter (mm) 30 ± 5 36 ± 3 $28 \pm 4^{\circ}$ $33 \pm 3^{\circ}$ Functional parameters Ly ejection fraction (%) 65 ± 7 58 ± 4 68 ± 6 $64 \pm 6^{\circ}$ Transmitral E wave (musec) 86 ± 16 96 ± 13 81 ± 17 88 ± 12 Transmitral E wave (musec) 86 ± 16 96 ± 13 81 ± 17 88 ± 12 Ly ejection fraction (%) 46 ± 16 96 ± 13 81 ± 17 88 ± 12 Transmitral E wave (musec) 86 ± 16 96 ± 13 81 ± 17 88 ± 12 LA, Left atrial; PW, pulsed-wave. Data are expressed as mean \pm SD. $^{P}C < 0.5$ for comparison with male athletes in the normal cardiac structure and function group. $^{P}C < 0.5$ for comparison with male athletes in the physiologic remodeling group.	LV posterior wall thickness (mm)	10.0 ± 1.2	11.8 ± 1.4	8.6 ± 1.1*	$10.7 \pm 0.7^{\dagger}$			
LA diameter (mm) 36 ± 4 40 ± 4 $32 \pm 3^{\circ}$ 38 ± 4 RV end-diastolic diameter (mm) 30 ± 5 36 ± 3 $28 \pm 4^{\circ}$ $33 \pm 3^{\circ}$ Functional parameters LV ejection fraction (%) 66 ± 7 58 ± 4 68 ± 6 $64 \pm 6^{\circ}$ Transmittal E wave (cm/sec) 96 ± 16 96 ± 13 81 ± 17 88 ± 12 Transmittal E wave (cm/sec) 96 ± 16 96 ± 13 81 ± 17 88 ± 12 Transmittal E wave (cm/sec) 96 ± 16 96 ± 13 81 ± 17 88 ± 12 LV ejection fraction (%) 86 ± 5 96 ± 13 81 ± 17 88 ± 12 LV ejection fraction (%) 96 ± 16 96 ± 13 81 ± 17 88 ± 12 LV ejection fraction (%) 96 ± 16 96 ± 13 81 ± 17 88 ± 12 LV ejection fraction (%) 96 ± 16 96 ± 13 81 ± 17 88 ± 12 LV ejection fraction (%) 96 ± 16 96 ± 13 81 ± 17 88 ± 12 LV ejection fraction (%) 96 ± 16 96 ± 13 81 ± 17 88 ± 12 LV ejection fraction (%) 96 ± 16 96 ± 13 81 ± 17 88 ± 12 LV ejection fraction (%) 96 ± 16 96 ± 13 81 ± 17 88 ± 12 LV ejection fraction (%) 96 ± 16 96 ± 13 81 ± 17 88 ± 12 LV ejection fraction (%) 86 ± 16 96 ± 13 81 ± 17 88 ± 12 LV ejection fraction (%) 86 ± 16 96 ± 13 81 ± 17 86 ± 12 LV ejection fraction (%) 86 ± 16 96 ± 13 81 ± 17 86 ± 12 LV ejection fraction (%) 86 ± 16 96 ± 13 81 ± 17 86 ± 12 LV ejection fraction (%) 86 ± 16 96 ± 13 81 ± 17 86 ± 12 LV ejection fraction (%) 86 ± 16 96 ± 13 81 ± 17 86 ± 12 LV ejection fraction (%) 86 ± 16 86 ± 16 81 ± 12	LV inner dimension at end-diastole (mm)	51 ± 3	57 ± 5	42 ± 4	04 ± 4			
RV end-diastolic dameter (mm) 30 ± 5 36 ± 3 $28 \pm 4^*$ $33 \pm 3^*$ Functional parameters LV ejection fraction (%) 65 ± 7 58 ± 4 68 ± 6 $64 \pm 6^{\dagger}$ Trapsmitral F wave (cm/sec) 86 ± 16 96 ± 13 81 ± 17 88 ± 12 Trapsmitral F wave (cm/sec) 86 ± 16 96 ± 13 81 ± 17 88 ± 12 Trapsmitral F wave (cm/sec) 86 ± 16 96 ± 13 81 ± 17 88 ± 12 Via Not a single healthy college athlete with walls > 14 mm 81 ± 12 Via With walls > 14 mm LA, Left atrial; PW, pulsed-wave. Data are expressed as mean ± SD. $?P < .05$ for comparison with male athletes in the normal cardiac structure and function group. $*P < .05$ for comparison with male athletes in the physiologic remodeling group.	LA diameter (mm)	36 ± 4	40 ± 4	$32 \pm 3^*$	38 ± 4			
Functional parameters Functional parameters LV ejection fraction (%) 66 ± 7 58 ± 4 68 ± 6 64 ± 6 [†] Transmitral F wave (cm/sec) 66 ± 16 96 ± 13 81 ± 17 88 ± 12 Transmitral F wave (cm/sec) 66 ± 16 96 ± 13 81 ± 17 88 ± 12 Transmitral F wave (cm/sec) with walls > 14 mm 10 10 10 P Mot a single healthy college athlete with walls > 14 mm 10 10 10 10 LA, Left atrial; PW, pulsed-wave. Data are expressed as mean ± SD. 19 < 05 for comparison with male athletes in the normal cardiac structure and function group.	RV end-diastolic diameter (mm)	30 ± 5	36 ± 3	28 ± 4*	$33 \pm 3^{+}$			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Functional parameters							
Transmitral E wave (cm/sec) #6 + 16 96 + 13 #1 + 17 #8 + 12 Transmitral E wave (cm/sec) Not a single healthy college athlete # <t< td=""><td>LV ejection fraction (%)</td><td>65 ± 7</td><td>58 ± 4</td><td>68 ± 6</td><td>64 ± 6⁺</td></t<>	LV ejection fraction (%)	65 ± 7	58 ± 4	68 ± 6	64 ± 6 ⁺			
Image: Product of the state of the stat	Transmitral E wave (cm/sec)	86 + 16	96 + 13	81 + 17	88 + 12			
LA, Left atrial; PW, pulsed-wave. Data are expressed as mean \pm SD. $^{P} < .05$ for comparison with male athletes in the normal cardiac structure and function group. $^{\dagger}P < .05$ for comparison with male athletes in the physiologic remodeling group.	Not a sir	ngle hea with wa	lthy college Ils > 14 mm	e athlet 1	e			
	LA, Left atrial; PW, pulsed-wave. Data are expressed as mean \pm SD. 'P < .05 for comparison with male athletes in th [†] P < .05 for comparison with male athletes in th	he normal cardiac st he physiologic remo	ructure and function group. deling group.					

Weiner et al. J Am Soc Echocardiogr 2012;25:568

MASSACHUSETTS GENERAL HOSPITAL HEART CENTER

Racial Differences in LV Remodeling in Highly Trained Athletes

- 300 Nationally Ranked Black Athletes compared to 300 Matched White Athletes and 150 B & W Sedentary people
- Blacks Athletes had Greater LV Thickness and Cavity Size
 - 16% BA and 4% WA had wall thickness > 12 mm
 - 3% BA and 0% WA had wall thickness >15mm
- BA with LVH had enlarged LVs and normal diastolic function

Basavarajaiah JACC 2008;51:2256-62

Pathologic LVH (HCM) vs Physiologic LVH (Athletic Heart)

Caselli et al. Am J Cardiol 2014;114:1382-89

Caselli et al. Am J Cardiol 2014;114:1382-89.

Two-dimensional speckle tracking echocardiography

Left Atrial Size and Function

Echocardiographic Characteristics								
	Controls (20)	Athletes (20)	HCM (20)	P (ANOVA)				
DD (mm)	51 ± 4	62±5*	$58 \pm 5^{+}$	<0.01				
SD (mm)	37±3	44 ± 4	39 ± 4	NS				
SW (mm)	9.2±1	$15 \pm 2^{*}$	$18 \pm 3^{*}$	< 0.01				
LVMI (g/m ²)	78±6	$143 \pm 12^{*}$	$157 \pm 15^{*}$	< 0.01				
LVEF (%)	60±5	57±5	59±5	NS				
LV GLS (%)	-20 ± 2	-18 ± 2	$-13 \pm 3^{**}$	0.02				
LV VTI (cm)	22±3	27±3	19±4	NS				
LA volume (mL/m ²)	25±2	40±5	45±6	<0.01				
LA area (cm²)	18±3	29±3	31±4	< 0.01				
LA diameter (mm)	35 ± 4	$49 \pm 4^{*}$	49 ± 4*	< 0.01				
LA emptying fraction	0.59 ± 0.12	0.61 ± 0.15	0.42 ± 0.08	<0.01				
E-wave (cm/sec)	55±4	65±5	69±3	0.04				
A-wave (cm/sec)	40±3	37±3	88±5**	< 0.01				
E/A ratio	1.3 ± 0.4	1.7 ± 0.4	$0.78 \pm 0.2^{**}$	0.02				
DT (msec)	188 ± 11	178±15	190 ± 15	NS				
é (cm/sec)	13.5 ± 2	14.4 ± 2	$5.5 \pm 1^{**}$	< 0.01				
E/é ratio	4.1 ± 1	5.2±1	$12.8 \pm 2^{**}$	< 0.01				

 $^*P < 0.05$ versus controls after significant ANOVA, $^{**}P < 0.05$ versus other groups after significant ANOVA. DD = diastolic diameter; SD = systolic diameter; SW = septal wall; LVMI = left ventricular mass index; LVEF = left ventricular ejection fraction; LV GLS = left ventricular global longitudinal strain; LV VTI = left ventricular volume-time integral; LA = left atrium; E/A = mitral inflow waves ratio; é = mean mitral annulus tissue Doppler; NS = not significant.

Gabrielli et al. Echocardiography 2012;29:943-949.

Left Atrial Size and Function

Pathologic LVH leads to left atrial dilatation with LA dysfunction

In contrast, this study provides more support that left atrial dilatation as a result of endurance training is an adaptive and healthy physiologic response

Peak LA Strain during LV Systole Marker of LA reservoir function Peak negative LA strain rate during LA contraction Marker of LA contractile function

Gabrielli et al. Echocardiography 2012;29:943-949

Thick LV Walls

<u>Physiologic:</u>

- Physiologic concentric LVH is symmetric <u>without</u> regional variation.

- Marked asymmetry is pathology until proven otherwise.
- Wall thickness "cut-offs" are VERY helpful.
 - Accurate absolute thicknesses >15 mm are pathologic until proven otherwise.
- E' values may be helpful, but not diagnostic
- Exercise testing may be useful discriminator (rule out other causes of LVH, i.e. hypertensive BP response)
- GLS and rate of untwisting may be helpful
- Detraining may be necessary to arrive at a final diagnosis.

Outline

- Principles of Exercise-induced Cardiac Remodeling
 Endurance vs. Strength training
- Healthy vs. Diseased (Athlete's heart vs. pathology)
 - 1. LV chamber enlargement
 - 2. RV chamber enlargement
 - 3. Aortic Dilatation
 - 4. LV wall thickening (gray zone hypertrophy)

Is there a role for Echo in Screening Athletes?
 Identification and Prevention of Sudden Cardiac Death

Causes of Sudden Cardiac Death in Athletes

Most Common:

- Hypertrophic CMP
- · Anomalous origin coronary artery

Less Common:

- Aortic Dilatation in Marfan
- Myocarditis

Uncommon:

- Arrhythmogenic RV Cardiomyopathy
- Atherosclerotic CAD
- Aortic Valve Stenosis

Utility of Screening Echo

- Incidence of SCD during sports varies from <1/100,000 athletes* to 2/100,000#
- In 2688 competitive athletes, 203 (7.5%) of echos were abnormal
 Only in 4 athletes did it stop athletic activity (HCM mostly)
- NO consensus on what type of echo to perform (handheld, limited, full, etc)
- · Cost effectiveness is determined by
 - 1) incidence of SCD related to sports practice
 - 2) Cost of the echo
 - 3) Years of potential life saved
 - All of the above are either unknown or highly variable

*Corrado et al, JAMA 2006;296:1593 # Steubvuk et al, JACC 2011;57:1291

Conclusions

- 1) Exercise training is a potent stimuli for cardiac remodeling and contributes to the development of "athlete's heart" morphology.
- 2) Understand the principles of exercise-induced cardiac remodeling
- 3) The nature and magnitude of cardiac remodeling depends upon sporting discipline, gender, race, level of and duration of training (Endurance vs. Strength).
- 4) Echocardiographic techniques can help differentiate healthy adaptation from underlying pathology
- 5) Echo can identify causes of SCD that are not caught with a screening ECG but the yield is still low and the cost-effectiveness is unknown