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Diastole is Not a Single Entity
Four Components of Diastolic Dysfunction

1. Fill on a stiff pressure-volume loop

2. Delay LV relaxation

3. Lose diastolic suction

4. Suffer atrial systolic failure

These rarely occur in isolation but considering 

them separately helps to understand diastole
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How to Get Diastolic Dysfunction

1) Fill on Stiff P-V Loop

Lorell BH. Ann Rev Med 1991;42:411-37
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Passive Tension in Cardiac Muscle:  Contribution of Collagen, Titin, 

Microtubules, and Intermediate Filaments
Granzier HL, Irving TC       Biophysical Journal 1995; 68: 1027-1044

Component Contribution
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Sources of Passive Elasticity
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• Transmitral velocity profiles

• Pulmonary venous profiles

• Doppler tissue imaging

• Color Doppler M-mode

• Future directions

Diastology 2018

Available Echocardiographic Methods

Mitral Inflow: E/A Velocity

SV at MV Leaflet Tips
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Key parameters of the

mitral inflow pattern:

• E velocity

• Decel time

•A velocity

•A Duration

• E/A ratio

MV Deceleration
Physical Determinants
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The stiffer the ventricle, the more rapid 

the pressure rise and reversal of p and 

the more rapid the deceleration

dv/dt  MVA/(LA-LV Compliance)
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Physical Determinants of Deceleration
Stiffer Ventricle = Shorter Decel Time
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DT  1/LV stiffness

• DT~140 msec  stiffness ~ 0.3 mmHg/ml

Little et al. Circulation 1995;92:1933

Garcia et al. Am J Physiol 2001;280:H554

y = 231.16e-1.7712x

r = 0.87
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Transmitral Flow and Prognosis

Restrictive Cardiomyopathy
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DT > 150 ms
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p<0.001

Klein et al., Circ 1991; 83: 808-815

Some Ventricles LOOK Like Amyloid

Are there new diagnostic methods for less obvious ones?
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HCM AS
Phelan, Collier et al. Heart 2012; 98: 1442-1448

Amyloid: Apex > 2x Base & Mid

Phelan, Collier et al. Heart 2012; 98: 1442-1448
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Rate of rise is proportional to growth of transmitral 

pressure gradient, p, and dp/dt = LAP/
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How to Get Diastolic Dysfunction

2) Delay relaxation
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Preload vs Relaxation
Confounding Effects

Garcia et al, JACC 1998;32:865



Page 9

Effect  of Relaxation on LV Inflow

Choong, et al, Circ 1987

With delayed relaxation, acceleration is slowed 

and E peak is lower.

 = 28
LA = 8

 = 31
LA = 8

 = 43
LA = 8

Effect  of LAP on LV Inflow

With rising LA pressure, acceleration is faster and 

E peak is higher.

Choong, et al, Circ 1987

 = 29
LA = 5

 = 31
LA = 9

 = 31
LA = 13
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Heart Rate (bpm) Heart Rate (bpm)

LVEDP Relaxation Time 

Constant ()

Exercise Can Unmask Delayed Relaxation

Normal Normal

Diastolic dysfunction

Diastolic dysfunction

• Transmitral velocity profiles

• Pulmonary venous profiles

• Doppler tissue imaging

• Color Doppler M-mode

• Future directions

Diastology 2018

Available Echocardiographic Methods
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AR
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Pulmonary Vein Doppler
Acquisition

Pulmonary Vein Doppler
Determinants of Waves

PVa

PVs1

PVs2 PVd

Atrial contractility 

LA pressure 

LV stiffness 

MV area 

Atrial contractility 

LA pressure 

LV stiffness 

MV area 

LV contractility 

Descent of annulus 

MR 

LV relaxation 

MV area 

MR 

Cardiac output 
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Predicting LVEDP

From Mitral and PV A-wave Duration

Rossvoll & Hatle, et al., JACC 1993; 21: 1687-1696

r = 0.68

The Problem with All Flow-Based Indices of 
Diastolic Function
Preload Sensitivity
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Needed: measures of LV systolic and 

diastolic function that are less 

dependent on preload

• Transmitral velocity profiles

• Pulmonary venous profiles

• Doppler tissue imaging

• Color Doppler M-mode

• Future directions

Diastology 2018

Available Echocardiographic Methods
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Tissue Doppler Imaging

Blood:  High velocity, low amplitude

Tissue:  Low velocity, high amplitude
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Mitral inflow

Mitral annulus
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Sohn et al., JACC 1997; 30: 474-80
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Normal Restriction Constriction
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Constriction vs Restriction

Garcia et al., JACC 1996; 27: 108-114
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Garcia et al., JACC 1996; 27: 108-114



Page 16

Assessment of LV Relaxation
DTE E-wave Inversely Related to 

P
W

-E
w

Tau

Anterior MI

Controls

E/A >1

E/A <1

Oki et al, Am J Cardiol 1997;79:928

If E  LAP/

and Ea  1/,
then LAP  E/Ea

Estimation of PLA
The “Magic” of E/e’

Nagueh et al. JACC 1997;30:1527-33.
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Estimation of PLA
The “Magic” of E/e’

Does this always work?

Not if the heart is normal

y = 0.019x + 6.11

r = 0.01

SEE: 3.04 mmHg
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Pulmonary Capillary Wedge Pressure (mmHg)

Firstenberg et al. J Am Coll Cardiol 2000; 36: 1664-9.

Estimation of Left Atrial Pressure
Subjects without Heart Disease
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Estimation of PLA
The “Magic” of E/e’

Does this always work?

Not if the heart is normal

And not if the heart is really, really sick

Circ 2009; 119: 62-70

EF = 24%
E = 135 cm/sec
Lateral e’ = 2
E/Ea = 67
PCW = 14 mmHg

EF = 31%
E = 89 cm/sec
Lateral e’ = 6.9
E/Ea = 14
PCW = 33 mmHg
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Correlation Mitral E/E’ - PCWP

Mullens et al.  Circulation 2009; 119: 62-70

Geske et al.  Circulation 2007; 116: 2702-8

Correlation Mitral E/E’ – Direct LAP
HCM Patients
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Don’t forget left atrial area!!

The HbA1c of end-diastolic pressure

Normal Ischemic

Courtois et al. Circulation 1990;81:1688-96

P

How to Get Diastolic Dysfunction

3) Lose Diastolic Suction
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IVPG are Critical During Exercise
Diastole Disproportionately Shortened

Diastolic Filling Time

Full Cardiac Cycle

Cheng, Circ Res 1992;70:9-19

IVPG IVPG

Invasive Measurement of Intraventricular 
Pressures

LA

RV

AO

Apex

Mid

Base

Completely impractical in clinical practice
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Color M-Mode Methodology 

Color M-Mode Methodology 
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Measurement of Propagation Velocity 

1 sec

10 cmVp = 30 cm/sec

LV

LA

Normal Restrictive
Delayed

relaxation

Color M-mode Doppler
Does Not Pseudonormalize
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CMM Calculation of IVPG

Greenberg et al. Am J Physiol 2001;280:H2507-15
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Correlation Between Delta IVPG and VO2 max
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VO2max = 7.82 * IVPG + 9.79

R = 0.79

P < 0.001

Heart Failure•
Normal Subjects•

Rovner et al. Am J Physiol 2005; 289: H2081-8

Left Ventricular Torsion

• The spiral architecture of the LV produces base-apex torsion

• This stores energy in systole that is released in diastole (suction)

• Though important in LV mechanics, torsion has been difficult   

to measure
MRI courtesy of Ed Shapiro, Johns Hopkins University
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Rest

Exercise

Torsion During Exercise

Apical twist

Apical twist

8°

18°

Notomi et al. Circ 2006; 113: 2524-2533
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TV
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0

2.5

5

7.5

-15-10-50

Peak LV untwisting, rad/s

IV
P

G
, 
m

m
H

g

  

LV Untwisting Predicts Suction Gradient

Notomi et al. Circ 2006; 113: 2524-2533
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Putting It All Together

• During systole, a significant amount of elastic energy is 
stored in the myocyte and the interstitum as torsion

• The earliest mechanical manifestation of diastole is an 
abrupt untwisting that is largely completed before the 
mitral valve opens

• This untwisting helps to establish a base-to-apex 
intraventricular pressure gradient in early diastole that 
assists in the low pressure filling of the heart

• Modulation of this mechanism allows the heart to 
augment its function many-fold during exercise

AR

Assessment complicated by having two 
outlets and no isovolumic period

A

Mitral Valve

Pulmonary Vein

How to Get Diastolic Dysfunction
4) Atrial Dysfunction
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Three Components of Atrial Function

• Pump

• Conduit

• Reservoir

E

A

S

D

AR

• Atrial fibrillation/flutter

• Heart transplant

• Amyloidosis

• Mitral stenosis/regurgitation

• Atrial fibrosis

Diseases with Atrial 

Dysfunction

Septal e’ ≥ 8

Lateral e’ ≥ 10 

LA  < 34 ml/m2

Septal e’ < 8

Lateral e’ < 10 

LA ≥ 34 ml/m2

Septal e’ 

Lateral e’

LA volume

Grade I

Guidelines Approach to Grading 

Diastolic Dysfunction, ca. 2009

Septal e’ ≥ 8

Lateral e’ ≥ 10 

LA ≥ 34 ml/m2

Grade II

Normal function, 

Athlete’s heart, or 

constriction

Normal. 

function Grade III

E/A < 0.8

DT > 200 ms 

Av. E/e  8

Ar-A < 0 ms

Val E/A < 0.5

E/A  0.8-1.5

DT 160-200ms 

Av. E/e  9-12

Ar-A ≥ 30 ms

Val E/A ≥ 0.5

E/A ≥ 2

DT < 160 ms 

Av. E/e ≥ 13

Ar-A ≥ 30 ms

Val E/A ≥ 0.5

Nagueh et al. JASE 2009; 22: 108-33

Big Problem
There are 8 combinations of 

these parameters, but only 3 

fit the algorithm!
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A Room with Eight Ways Out

But 5 of them are locked!

How Well Do These Work in Practice?
• 401 consecutive patients, age 59±16 years (60%M)

• Using only the 3 primary classifiers (LAVi, septal and lateral e’), diastolic 
function could be assigned in only 34% of cases

• For the 5 secondary indices (E/A ratio, E deceleration time, E/E’, PV AR 
reversal duration, and E/A with Valsalva), “concordance” (3+/5 indices in 
agreement) occurred in only 64% of cases.

Let’s take another swing at the guidelines!
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Nagueh et al. JASE 2016; 29: 277-314

Grading Diastolic Dysfunction
With LVEF<50% or Other LV Disease
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How applicable are the new guidelines???

Stay tuned for Jae Oh’s analysis…

Keys to Handling Discrepant Indices

• Discount technically limited indices
• Don’t overinterpret garbage

• Look at the atrium
• Normal atrial size virtually precludes severe DD
• Large atrium must be explained but DD isn’t only cause 

(consider AF, MR, and MS)
• Atrial systolic failure must be recognized

• Despite our “linear” grading scheme, diastole is far 
more complex
• Consider early and late diastole separately
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Diastole is Not a Single Entity
Four Components of Diastolic Dysfunction

1. Fill on a stiff pressure-volume loop

2. Delay LV relaxation

3. Lose diastolic suction

4. Suffer atrial systolic failure

These rarely occur in isolation but considering 

them separately helps to understand diastole


