Cardio-oncology: Applying new echo technology to guide therapy

Dinesh Thavendiranathan MD, SM, FRCPC, FASE

Director, Ted Rogers Program in Cardiotoxicity Prevention Assistant Professor of Medicine Division of Cardiology and Joint Division of Medical Imaging Toronto General Hospital, University Health Network University of Toronto, Toronto Canada

The Promise of a Healthy Heart.

TED ROGERS CENTRE FOR HEART RESEARCH

UNIVERSITY OF

Disclosures

- Janssen Advisory Board •
- Takeda Advisory Board ٠

Outline

- 3D echocardiography in cardio-oncology
- Myocardial strain to potentially guide treatment
 - Baseline risk
 - Early detection and treatment
- Trials to guide practice

The Promise of a Healthy Heart.

Consequence of Myocardial Injury

Peter Munk Cardiac

Abdel-Qadir et al, JAMA Cardiology Oct 2016

Thavendiranathan et al, JCO; 2016, Apr 18.

The Promise of a Healthy Heart.

TED ROGERS CENTRE FOR HEART RESEARCH

The Promise of a Healthy Heart.

Detection of Cardiotoxicity

Left Ventricular EF

Thavendiranathan et al, JACC 2013 Jan 8;61(1):77-84.

The Promise of a Healthy Heart.

Detection of Cardiotoxicity Left Ventricular EF

EXPERT CONSENSUS STATEMENT

Expert Consensus for Multimodality Imaging Evaluation of Adult Patients during and after Cancer Therapy: A Report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging

2.1. LV systolic function.

- Echocardiography is the method of choice for the evaluation of patients before, during and after cancer therapy.
- Accurate calculation of LVEF should be done with the best method available in the echocardiography laboratory (ideally 3DE).
- When using 2DE, the modified biplane Simpson technique is the method of choice.

The Promise of a Healthy Heart.

TED ROGERS CENTRE FOR HEART RESEARCH

3D Echocardiography Gaps

- Does 3D echocardiography identify cardiotoxicity earlier or more accurately?
- Does it provide incremental prognostic value?
- Does it guide earlier treatment?

Question

Which of the following is true about myocardial strain imaging?

- 1. Pre-cancer therapy strain can be used to guide cancer therapy
- 2. Cardiac meds guided by strain imaging prevents heart failure
- 3. Cardiac meds guided by strain imaging in survivors prevents LV systolic dysfunction
- 4. GLS measurements are more reproducible than 3D LVEF

Myocardial strain

- 1. Pre-treatment risk assessment
- 2. Early detection of myocardial injury
- 3. Prediction of LVEF recovery
- 4. Subclinical disease in survivors

The Promise of a Healthy Heart.

Pre-treatment risk assessment

Narayan HK et al, JACC: Cardiovascular Imaging, 2016

The Promise of a Healthy Heart.

Pre-treatment risk assessment

TABLE 2 Associations of Strain, Strain Rate, and Ventricular-Arterial Coupling Parameters With Odds of CTRCD											
	Model 1* OR (95% CI)	p Value	Model 21 OR (95% CI)	p Value	Model 3‡ OR (95% CI)	p Value	∆QIC§				
Strain											
Longitudinal stra	ain, %										
Baseline	1.13 (0.88-1.44)	0.34	1.24 (0.89-1.75)	0.21	1.25 (0.89-1.75)	0.20	-12.5				
Chapge	117 (100-127)	0.051	1.26 (1.04-1.52)	0.017	1.25 (1.01-1.52)	0.027					
Circumferential strain, %											
Baseline	1.23 (1.10-1.36)	< 0.001	1.28 (1.14-1.42)	<0.001	1.31 (1.16-1.47)	<0.001	-31.8				
Change	1.13 (1.05-1.21)	0.002	1.17 (1.06-1.30)	0.002	1.21 (1.10-1.34)	<0.001					
Radial strain, %											
Baseline	1.00 (0.97-1.03)	0.97	0.99 (0.95-1.03)	0.74	0.98 (0.95-1.02)	0.39	-31.2				
Change	0.98 (0.96-1.00)	0.075	0.97 (0.94-0.99)	0.034	0.97 (0.94-0.99)	0.015					
Eve	ry 1% dif	feren	ce in Circ	umfer	ential str	ain at					
bas	seline 319	% incr	ease in o	dds of	f cardioto	xicity					
changern	1.12 (1.00-1.16)	< 0.001	1.15 (1.07-1.25)	<0.001	1.17 (1.09-1.20)	<0.001					
Radial strain rate	e, 0.1/s										
Baseline#	1.00 (0.96-1.05)	0.99	0.99 (0.94-1.04)	0.65	0.98 (0.93-1.04)	0.56	-32.0				
Change**	0.98 (0.95-1.01)	0.15	0.96 (0.93-0.99)	0.023	0.96 (0.93-0.99)	0.006					
Ventricular-arterial	l coupling										
Ea/Ees _{sb}											
Baseline ⁺⁺	1.40 (1.22-1.60)	< 0.001	1.39 (1.21-1.59)	<0.001	1.38 (1.18-1.60)	<0.001	-15.0				
Change##	1.26 (1.14-1.40)	< 0.001	1.26 (1.13-1.40)	<0.001	1.23 (1.10-1.37)	<0.001					

Narayan HK et al, JACC: Cardiovascular Imaging, 2016

Pre-treatment risk assessment

- 450 patients
- Hematological malignancy
- Anthracycline treated
- Followed for median 15: days
- 6% developed cardiac events (HF or death)
- Pre-treatment echo

Pre-treatment risk assessment

Study or Subgroup	Events	Total	Events	Total	Weight	M-H. Fixed, 95% CI	M-H. Fixed, 95% Cl	
1.1.1 Dexrazoxane Va	Control							
Lopez 1998	4	59	13	62	4.5%	0.32 [0.11, 0.94]	_ . _	
Marty 2006	10	85	29	79	10.6%	0.32 [0.17, 0.61]		European Heart Journal (2016) 37, 1671–1680 AHA FASTIRACK
Speyer 1992	6	76	37	74	13.2%	0.16 [0.07, 0.35]		LUSTA7 doi:10.1093/earheart/dw/022 CLINICAL RESEARCH
Swain-1 1997	26	168	67	181	19.3%	0.47 [0.31, 0.72]		CAMERAGE P
Swain-2 1997	11	81	32	104	9.9%	0.44 [0.24, 0.82]	-	-
Venturni 1996		62	10	10	6.5%	0.32 [0.13, 0.76]		
Subtotal (95% CI)	-	569	10	593	67.7%	0.35 [0.27, 0.45]	•	Heart failure/cardiomyopathy
Total events	66		196					
Heterogeneity: Chi* = 0	3.43, df = 6	3 (P = 0.3)	(B); I* = 7*	%				Prevention of cardiac dysfunction during adjuvant
Test for overall effect:	2 = 8.15 (F	×< 0.000	01)					
1.1.2 Beta Blocker Vs	Control							breast cancer therapy (PRADA): a 2×2 factorial,
Bosch -1 2013	3	45	11	45	3.9%	0.27 [0.08, 0.91]		
Kalay 2006	1	25	5	25	1.8%	0.20 [0.03, 1.59]		randomized, placebo-controlled, double-blind
Subtotal (95% CI)		176	21	282	12.0%	0.31 [0.16, 0.63]	•	
Total events	9		43					clinical trial of candesartan and metoprolol
Heterogeneity: Chi ² = 0	0.36, df = 2	8.0 = q) 5	$(4); I^2 = 0^4$	Ma				
Test for overall effect: 1 1.1.3 Statin Vs Control	Z = 3.30 (F xi	P = 0.001	0)					Geeta Gulati ^{1,2†} , Siri Lagethon Heck ^{1,2†} , Anne Hansen Ree ^{3,4} , Pavel Hoffmann ⁵ , leanette Schulz-Menger ^{4,7} , Morten W. Fagerland [®] , Berit Gravdehaug ⁹ ,
Acar 2011	1	20	5	20	1.8%	0.20 [0.03, 1.56]		Elorian yon Knobelsdorff, Brenkenhoff, Ase Bratland ¹⁰ , Trygnye H, Storial
Seicean-2 2012	4	67	23	134	5.4%	0.35 [0.13, 0.97]	-	Fibrian for Knobelsdorn-Drenkennon, Ase bradand , Hyggre H. Storas ,
Subtotal (95% CI)	-	87		154	7.1%	0.31 [0.13, 0.77]	-	Tor-Arne Hagve", 14, Helge Røsjø '.4, Kjetil Steine '.4, Jürgen Geisler', ", and
Total events	5		28					Torbjørn Omland ^{1,2*}
Tent for overall effect	7 = 2.52/6	P = 0.01	(4); I [*] = 0	2%				
1.1.4 Angiotensin ant	agonist v	s contro						Toppartment of Cardining, Denision of Hinduton, Alexthus University Haspitel, Lerinshing, Hainway, Content for Heart Takart Binarch et G. Jossen, Center Res. 2016, Hainway, Toppartment of Christiang, Denision of Hedroin, Naming University Hospitel, Lerinshing, Heinway, Toppartment of Christiang, Denision of Lendminsort and and Hedroin, University of Ods, Ods, Nerway, Toppartment of Cardining, Denision of Lendminsort and and Public Sciences, Odvice University Hospitel, University, Hospitel, University, Hospitel, University, Hospitel, Ods, Nerway, Toppartment of Cardining, Denision of Cardining, Denision of Public Sciences, Odvice University Hospitel, University, Hospitel, Un
Bosch -2 2013	3	45	11	45	3.9%	0.27 [0.08, 0.91]		Supporting of Landard Bayesian Section (2019) Internet Products America Section, Carriany, Proceeding Control and Products and Control Section (2019) Internet Section (201
Cardinale 2006	0	56	25	58	8.8%	0.02 [0.00, 0.33]		Hospital Lamoning, Norway: "Department of Discology, Division of Cancer Healtime, Surgery & Transplanation, Oxio University Hospital-Norwegan Radium Hospital, Oxio,
Nakamae 2005	0	20	1	20	0.5%	0.33 [0.01, 7.72]		Norway: "Intervention Contro, Only University Hispital, Oslo, Norway, and "Section for Medical Biochamistry, Delsion for Diagnostics and Technology, Alexindra University Movements and Technology.
Total events	3		37	120	10.2.74	0.11 [0.04, 0.20]	-	
Heterogeneity: Chi ² = 4	4.20, df = 2	2 (P = 0.1	2); P = 51	2%				Received 3 Neuerober 2013; revised 14 December 2013; excepted 19 January 2016; entities published reduced of prior 21 February 2016
Test for overall effect:	Z = 4.34 (F	< 0.000	1)					See page 1681 for the editorial commont on this article (doi:10.1093/corhoart/johw133)
Total (95% Ci)		953		1152	100.0%	0.31 [0.25, 0.39]	•	
Total events	83		304					
Heterogeneity: Chi ² = 1	12.15, df =	14 (P =	0.59); l ² =	0%			1001 01 1 10 1000	
Test for overall effect:	Z = 10.24	(P < 0.00	001)			Fav	ours [experimental] Favours [control]	
Test for subaroup diffe	rences: Ch	1 [#] = 5.03	. df = 3 (F	P = 0.17	 I^a = 40. 	3%	to the second second	

Kalam K and Marwick TH, European J of Cancer 2013

The Promise of a Healthy Heart.

B-----

TED ROGERS CENTRE FOR HEART RESEARCH

"Subclinical" Cardiac Injury

Ejection Fractions (EF)								
	Nuclear (n =	Scans 173)	Echocardiogram (n = 146)					
Biopsy Grade	No. Patients	Mean EF	No. Patients	Mean EF				
0	16	63%	16	65%				
0.5	50	66%	43	66%				
1.0	55	62%	46	67%				
1.5	21	58%	19	61%				
2.0	20	61%	15	62%				
3.0	11	61%	7	65%				

Table 7. Comparison of Biopsy Grades With

- 158 patients various cancers, Adriamycin Rx
- Higher biopsy grades in pts with normal EF even with moderate cumulative dose of Rx

The Promise of a Healthy Heart.

UHN Peter Munk Cardiae Centre

Early Detection of Myocardial Dysfunction Cardiotoxicity ROCC ΔGLS ΔGLSR-ΔGLSR-ΔS' Δe' 0.8

N=43, 21% CTOX, AC followed by TZM Sawaya H et al. Am J Cardiol 2011;107:1375

N=81, 30% CTOX, All trastuzumab, 40% A

Negishi K et al, JASE 2013, 26: 493-8

The Promise of a Healthy Heart.

TED ROGERS CENTRE FOR HEART RESEARCH

Prognosis

Sensitivity	Specificity	PPV	NPV		
79%	82%	60%	92%		
86%	81%	60%	95%		
Sewaya et al. (41)†					
78%	79%	50%	93%		
67%	82%	50%	90%		
55%	97%	83%	89%		
89%	65%	40%	97%		
Sawaya et al. (40)†					
74%	73%	53%	87%		
48%	73%	44%	77%		
35%	93%	67%	77%		
87%	53%	43%	91%		
	Sensitivity 79% 86% 78% 67% 55% 89% 74% 48% 35% 87%	Sensitivity Specificity 79% 82% 86% 81% 78% 79% 67% 82% 55% 97% 89% 65% 74% 73% 48% 73% 35% 93% 87% 53%	Sensitivity Specificity PP V 79% 82% 60% 86% 81% 60% 78% 79% 50% 67% 82% 50% 56% 97% 83% 89% 69% 40% 74% 73% 53% 48% 73% 53% 48% 73% 44% 35% 93% 67% 87% 53% 43%		

Thavendiranathan et al , JACC 2014

Management EXPERT CONSENSUS STATEMENT

Expert Consensus for Multimodality Imaging Evaluation of Adult Patients during and after Cancer Therapy: A Report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging

Juan Carlos Plana, MD, FASE, Chair, Maurizio Galderisi, MD, FESC, Co-Chair, Ana Barac, MD, PhD,

Peter Munk

Cardiac

TED ROGERS CENTRE FOR HEART RESEARCH

The Promise of a Healthy Heart.

Treatment - SUCCOUR - RCT

Study PI: Dr. Thomas Marwick - **Tom.Marwick@bakeridi.edu.au** North American PI: Dr. P. Thavendiranathan – **dinesh.thavendiranathan@uhn.ca**

The Promise of a Healthy Heart.

Cardiac Centre

Myocardial strain – recovery of ventricular function

- Newly diagnosed breast cancer, AC followed by trastuzumab • (N=95)
- CTOX (ASE) in 19 (20%) ٠
- Reversibility as per ASE = 13 •

Echocardiographic Variables Shortly after AC Completion for Identifying Development of Cardiotoxicity in Patients with Breast Cancer Treated with Anthracyclines and Trastuzumab by Cox Regression Model

Hong-wen F et al. Echocardiography 2016 Peter Munk Cardiac

TED ROGERS CENTRE FOR HEART RESEARCH

TED ROGERS CENTRE FOR HEART RESEARCH

The Promise of a Healthy Heart.

Strain in pediatric cancer survivors

The Promise of a Healthy Heart.

Multi-center Reproducibility

	Core Lab value	Site value	Bias	LOA	ICC [95%CI]
GLS, %	-21.0±2.4	-20.4±2.1	0.7	3.1	0.845 [0.692, 0.919]
EF2D, %	61.7±3.5	63.8±5.3	2.0	9.8	0.513 [0.147, 0.725]
EF3D, %	61.6±4.6	62.0±4.7	0.5	8.0	0.750 [0.536, 0.866]

Negishi T et al, JACC CV Imaging, 2016, Oct 6 58 Readers from North America, Europe, Asia and Oceania

> Peter Munk Cardiac

TED ROGERS CENTRE FOR HEART RESEARCH

Experience and Reproducibility

No = 0 cases Limited = 1-20 Intermediate = 21-100 High >100 cases Expert > 1000 cases

Negishi T et al, JACC CV Imaging, 2016, Oct 6 58 Readers from North America, Europe, Asia and Oceania

The Promise of a Healthy Heart.

The Promise of a Healthy Heart.

UHN Peter Munk Cardiac Centre

Image Quality and Reproducibility

0.996 [95%Cl 0.990, 0.999]	0.962 [0.900, 0.994]	<0.001				
0.997 [95%Cl 0.990, 1.000]	0.961 [0.875, 0.997]	<0.001				
0.993 [95%Cl 0.965, 1.000]	0.868 [0.421, 1.000]	<0.001				
0.01	<0.001					
Negishi T et al, JACC CV Imaging, 2016, Oct 6						
	0.996 [95%CI 0.990, 0.999] 0.997 [95%CI 0.990, 1.000] 0.993 [95%CI 0.965, 1.000] 0.01 gishi T et al, JACC CV Imag	0.996 [95%CI 0.990, 0.999] 0.962 [0.900, 0.994] 0.997 [95%CI 0.990, 1.000] 0.961 [0.875, 0.997] 0.993 [95%CI 0.965, 1.000] 0.868 [0.421, 1.000] 0.01 <0.001 sishi T et al, JACC CV Imaging, 2016, Oct 6				

Question

Which of the following is true about myocardial strain imaging?

CUFN Cardiac Centre

- 1. Pre-cancer therapy strain can be used to guide cancer therapy
- 2. Cardiac meds guided by strain imaging prevents heart failure
- 3. Cardiac meds guided by strain imaging in survivors prevents LV systolic dysfunction
- 4. GLS measurements are more reproducible than 3D LVEF

Case Example

- 51 year old woman, high risk HER2+, left sided breast cancer
- Treatment

The Promise of a Healthy Heart.

- Mastectomy, Epirubicin (300mg/m²), Trastuzumab (17 cycles), refused radiation therapy, hormonal therapy
- No cardiovascular disease history, no CV risk factors, nonsmoker, no medications, excellent functional capacity

TED ROGERS CENTRE FOR HEART RESEARCH

 Baseline peaks systolic Circumferential strain -19.6% (mildly reduced)

Case - Summary

Time	3D EF	MRI EF	GLS	E/A	E/e'	HsTpl	ΝΥΗΑ
Pre	61	56.7	-21.5	0.9	7.0	2	I
PostA	53	50.5	-17.9	1.1	8.7	48	I
1 month H	48	47.4	-15.1	1.6	11.3	102	11-111
6 weeks	56	55.5	-19.2	1.0	4.4	17	I
6 months	54	52.6	-17.8	1.2	6.1	8	L
9 months	53	-	-18.1	1.3	8.0	3	I
12 months	53	53.0	-17.1	1.3	5.0	2	I
24 months		-					I

Summary

- Limited data ?immunotherapy/ proteosome inhibitors? / immunomodulators?
- 3D EF more accurate reproducible
 - More accurate diagnosis ? Prognosis? Guide Rx?
- Value of strain
 - Circumferential strain pre treatment risk
 - Longitudinal strain LV dysfunction / recovery
 - LS / CS identifies subclinical disease in survivors
 - Strain is more reproducible than LVEF
- We need data on using these techniques to guide therapy and modify prognosis!

The Promise of a Healthy Heart.

