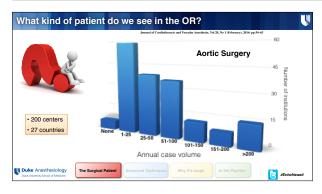
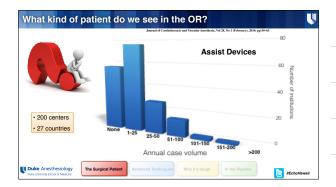
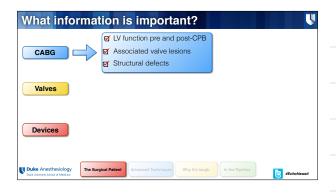
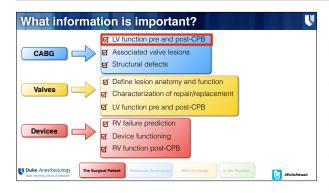


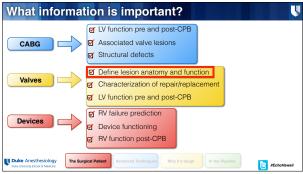
Disclosures	
• Still nothing	STOP
Uke Anesthesiology Duke University School of Medicine	EchoHawaii

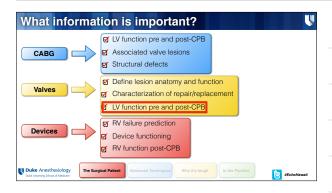




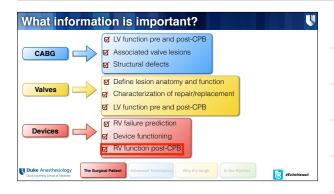


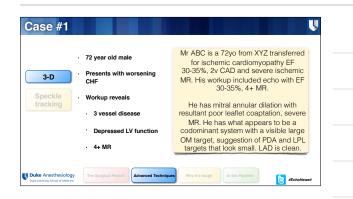


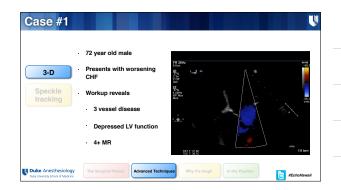


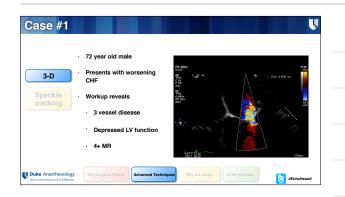

What informa	tion is important?
CABG	LV function pre and post-CPB Associated valve lesions Structural defects
Valves	 Define lesion anatomy and function Characterization of repair/replacement LV function pre and post-CPB
Devices	
U Duke Anesthesiology Duke University School of Medicine	yical Patient Advanced Techniques Why I's lough In the Pipeline EchoHawald

awaji



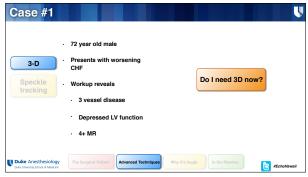


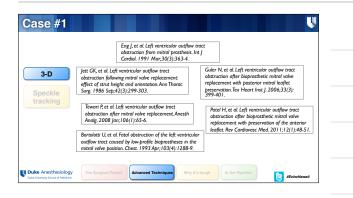

What informa	tion is important?
	LV function pre and post-CPB Associated valve lesions Structural defects
Valves	 Define lesion anatomy and function Characterization of repair/replacement LV function pre and post-CPB
Devices	Ø RV failure prediction Ø Device functioning Ø RV function post-CPB
Unite University School of Medicine	rgical Patient Advanced Techniques Why It's lough In the Pipeline EchoManai



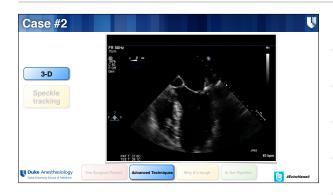


What tech	niques c	an we us	e?		U
3-D Speckle tracking					
U Duke Anesthesiology Duke University School of Medicine	The Surgical Patient	Advanced Techniques	Why it's tough	In the Pipeline	E #EchoHawali

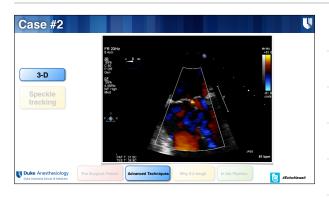


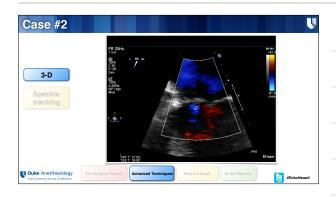


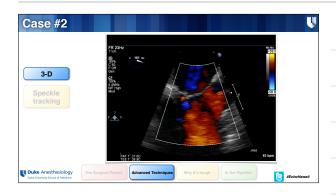


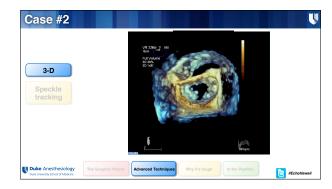

×	
#EchoHawaii	
·	

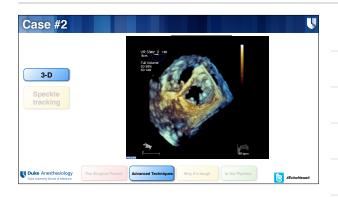
	Eng J, et al. Left ventricular out tract obstruction from mitral pn Int J Cardiol. 1991 Mar;30(3):363-4.	osthesis.	
3-D Speckle	Jett GK, et al. Left ventricular outflow tract obstruction following mitral valve replacement: effect of strut height and orientation. Ann Thorac Surg. 1986 Sep;42(3):299-303.	Guler N, et al. Left ventricular outflow tract obstruction after bioprosthetic mitral valve replacement with posterior mitral leaflet preservation. Tex Heart Inst J. 2006;33(3):399-401.	
tracking	Tewari P, et al. Left ventricular outflow tract obstruction after mitral valve replacement.Anesth Analg. 2008 Jan; 106(1):65-6.	Patel H, et al. Left ventricular outflow tract obstruction after bioprosthetic mitra valve replacement with preservation of the anterior leaflet. Rev Cardiovasc Med.	
	Bortolotti U, et al. Fatal obstruction of the left ventricular outflow tract caused by low-profile bioprostheses in the mitral valve position. Chest. 1993 Apr; 103(4):1288-9.	2011;12(1):48-51.	





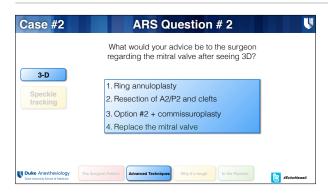






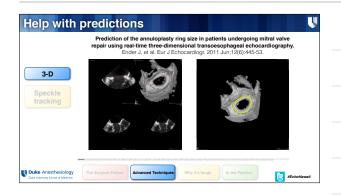
Case #2	ARS Question # 1	V
	What would your advice be to the surgeon regarding the mitral valve?	
3-D	1. Ring annuloplasty	
Speckle tracking	2. Resection of A2/P2 and clefts	
tracking	3. Option #2 + commissuroplasty	
	4. Let me show you some cool 3D	
	5. Replace the mitral valve	
U Duke Anesthesiology	Surgical Patient Advanced Techniques Why It's tough In the Pipeline	
Duke University School of Medicine		EchoHawaii

Case #2	ARS Question # 1	U
	What would your advice be to the surgeon regarding the mitral valve?	
3-D	1. Ring annuloplasty	
Speckle	2. Resection of A2/P2 and clefts	
tracking	3. Option #2 + commissuroplasty	
	4. Let me show you some cool 3D	
	5. Replace the mitral valve	
U Duke Anesthesiology Duke University School of Medicine	The Surgical Patient Advanced Techniques Why It's tough In the Pipeline	JEchoHawali

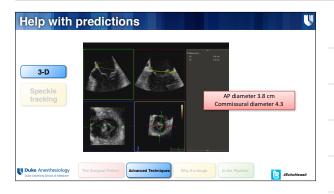


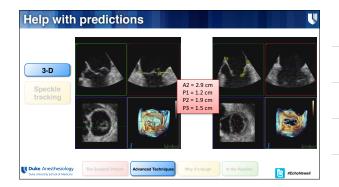
Case #2	ARS Question # 2	W
3-D	What would your advice be to the surgeon regarding the mitral valve after seeing 3D?	
Speckle tracking	1. Ring annuloplasty 2. Resection of A2/P2 and clefts 3. Option #2 + commissuroplasty 4. Replace the mitral valve	
Unite Anesthesiology Date University Stood of Medicine	The Surgical Patient Advanced Techniques Why it's longh in the Pipeline	E #EchoHawaii

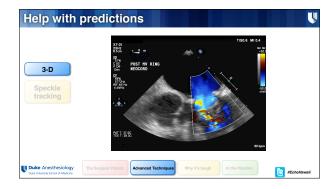
the surgeon r seeing 3D?		-					
is sty							
In the Pipeline	E #EchoHawaii						

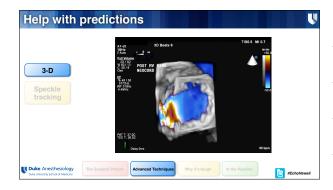


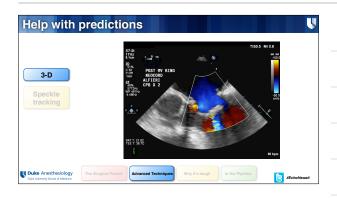
	Quantitative analysis of mitral valve apparatus in mitral valve prolapse before and after annuloplasty: a three-dimensional intraoperative transesophageal study. Malfessamit F, et al. J Am Soc Echocardiogr. 2011 Apr;24(4):405-13
3-D	Quantitative Modeling of the Mitral Valve by Three-Dimensional Transesophageal Echocardiography in Patients Undergoing Mitral Valve Repair: Correlation with Intracoperative Surcical Technique.
Speckle	Calleja A, et al. J Am Soc Echocardiogr. 2015 Sep;28(9):1083-92
tracking	Real-time three-dimensional transthoracic echocardiography for predicting mitral annuloplasty ring size. Labib DO, et al. J Heart Valve Dis. 2014 Sep.23(5):533-90
	Prediction of the annuloplasty ring size in patients undergoing mitral valve repair using real-time three-dimensional transoesophageal echocardiography. Ender J, et al. Eur J Echocardiogr. 2011 Jun;12(6):445-53.

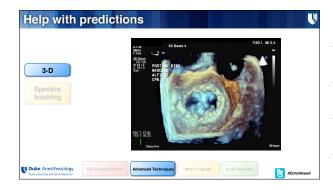


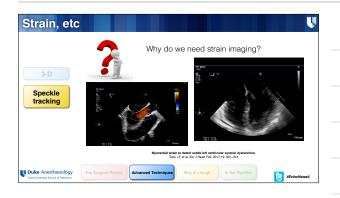


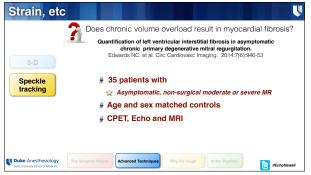


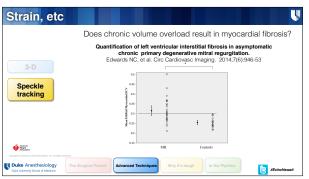


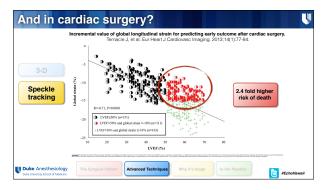


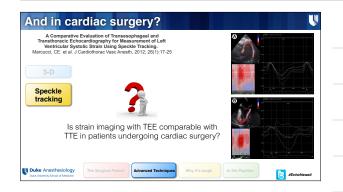


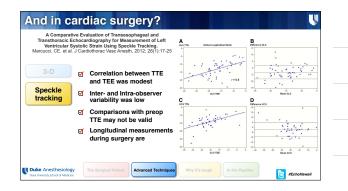


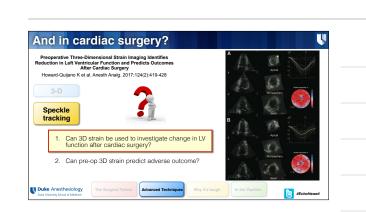


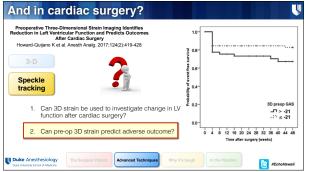


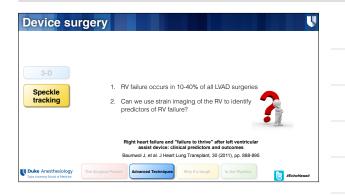

ic volume overload result in myocardial fibrosis?	
ion of left ventricular interstitial fibrosis in asymptomatic ronic primary degenerative mitral regurgitation. Is NC, et al. Circ Cardiovasc Imaging. 2014;7(6):946-53	
atients with	
mptomatic, non-surgical moderate or severe MR	
and sex matched controls	
, Echo and MRI	
anced Techniques Why It's lough In the Pipeline	

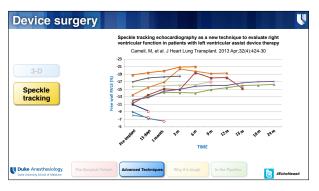


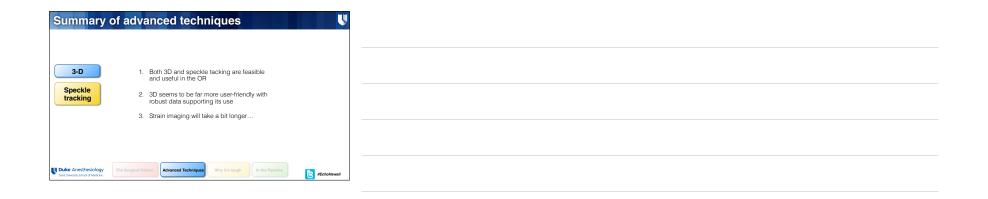

Strain, etc	
3-D Speckle tracking	Dees chronic volume overload result in myocardial fibrosis?
Constant C American Heart Association, Inc. All clima read	0 5 20 15 20 25 10 30 50 70 90 Minul annular plane systolic excursion (nnn) Left atrial volume index (ml/m2)
Duke Anesthesiology Duke University School of Medicine	The Surgical Patient Advanced Techniques Why it's lough In the Pipeline

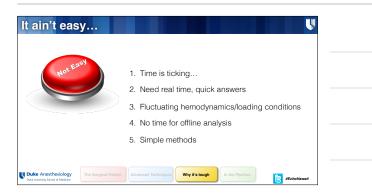




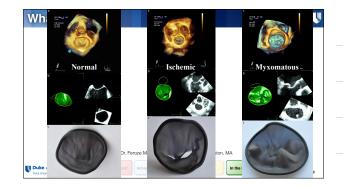


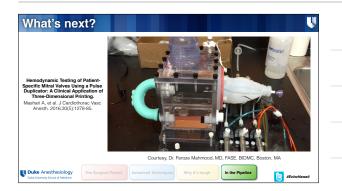






ali	





Points	
Echolemai	

