

Congenital Heart Disease I: The Unrepaired Adult

Doreen DeFaria Yeh, MD FACC

Assistant Professor, Harvard Medical School MGH Adult Congenital Heart Disease Program Echocardiography Section. No disclosures October 10, 2017; ASE Echo Florida

Overview: Unrepaired Adult Congenital Heart Disease

Case review of common and uncommon congenital lesions

Natural History of Unrepaired CHD

Growing Adult CHD population

1.2M Adults in the US with Congenital Heart Disease

46M history of a restrictive VSD new diastolic murmur

46M asymptomatic. You recommend:

- A. Serial echo monitoring as the defect is restrictive
- B. Percutaneous closure to the VSD and aortic root fistula
- C. Surgical valve sparing aortic root replacement and VSD closure
- D. Monitoring for LV volume load, then surgical correction

9

46M asymptomatic. You recommend:

- · A. Serial echo monitoring as the defect is restrictive
- B. Percutaneous closure to the VSD and aortic root fistula
- C. Surgical valve sparing aortic root replacement and VSD closure
- D. Monitoring for LV volume load, then surgical correction

10

Ventricular Septal Defects

- Inlet:
 - AV septal defect, may be associated with ASD
- · Outlet / Supracristal:
 - · can lead to Ao RCC prolapse
- Membranous:
 - Commonly closes spontaneously
- Muscular:
 - · May be multiple

DeFaria, Liberthson, Bhatt. 2013

Associated Lesions:

 Pulmonic stenosis, BAV, coarctation, subaortic membranes

MASSACHUSETTS
GENERAL HOSPITAL
INSTITUTE FOR HEART,
VASCULAR AND STROKE CARE

Complications of VSDs:

- · Left Heart Enlargement
- · Atrial Arrhythmias
- Endocarditis
- Aortic Cusp Prolapse; Aortic Insufficiency
- Sinus of Valsalva Aneurysm → Fistula (continuous murmur)
- Pulmonary Hypertension/ Eisenmenger Physiology

DeFaria, King Curr Card. 2015

ACHD Guidelines: VSD

CLASS I

- Catheterization to assess operability of adults with VSD and PAH
- Closure for Qp/Qs of > 2.0 and clinical evidence of LV volume overload (B)
- · History of endocarditis

CLASS IIa

- Closure is reasonable:
 - Net L>R shunt with Qp/Qs > 1.5 and PASP < 2/3 systemic, PVR <2/3 SVR (B)
 - Net L>R shunt with Qp/Qs > 1.5 in the presence of LV systolic or diastolic failure (B)

CLASS IIb

 Pulmonary vasodilators for VSDs with progressive/severe pulmonary vascular disease (B)

CLASS III

 VSD closure is not recommended in patients with severe irreversible PAH (B)

Warnes, Circ 2008

64F year old male with new atrial flutter

· Exertional fatigue and two 'normal' prior echos

TEE

Atrial septal defects

Sinus Venosus: (rare)

- ECG: junctional or low atrial rhythm
- Anomalous pulmonary venous drainage into RA or vena cavae

Ostium Primum:

- MR, cleft MV leaflet, VSD
- ECG: RBB morphology, LAD 1st degree AVB (75%)

DeFaria, Liberthson, Bhatt. 2013

· Ostium Secundum:

- MVP (10-20%)
- ECG: RBB morphology, RAD

Sinus Venosus Defects

Atrial septal defects

- Sinus Venosus: (rare)
 - ECG: junctional or low atrial rhythm
 - Anomalous pulmonary venous drainage into RA or vena cavae

Ostium Primum:

- MR, cleft MV leaflet, VSD
- ECG: RBB morphology, LAD 1st degree AVB (75%)
- Ostium Secundum:
 - MVP (10-20%)
 - ECG: RBB morphology, RAD

Atrial septal defects

- <u>Sinus Venosus</u>: (rare)
 - ECG: junctional or low atrial rhythm
 - Anomalous pulmonary venous drainage into RA or vena cavae

Ostium Primum:

- MR, cleft MV leaflet, VSD
- ECG: RBB morphology, LAD 1st degree AVB (75%)

Ostium Secundum:

- MVP (10-20%)
- ECG: RBB morphology, RAD

Complications related to ASDs in adults

- Paradoxical embolization
- Atrial arrhythmias
- Right heart enlargement; Exertional fatigue
- Pulmonary hypertension

ACHD Guidelines

CLASS I

- RA or RV enlargement
 - With or without symptoms
- Percutaneous closure for secundum defects
- Surgical closure: sinus venosus, coronary sinus, or primum ASD

CLASS IIa

- Surgical closure of secundum ASD is reasonable:
 - when the anatomy of the defect precludes the use of a percutaneous device. (C)
- paradoxical embolism (C)
- orthodeoxia-platypnea (B)

30M recently emigrated to the US. VSD murmur and leg claudication with radial-femoral delay

The following statement is true.

- A. Surgical correction of coarctation is indicated if the peak gradient by echo exceeds 20mmHg
- B. Surgical correction of coarctation is indicated if the mean gradient by echo exceeds 20mmHg
- C. Surgical correction of coarctation is indicated if the peak to peak cath gradient exceeds 20mmHg
- D. Surgical correction of coarctation is not indicated in the presence of collateral vessels

29

The following statement is true.

- A. Surgical correction of coarctation is indicated if the peak gradient by echo exceeds 20mmHg
- B. Surgical correction of coarctation is indicated if the mean gradient by echo exceeds 20mmHg
- C. Surgical correction of coarctation is indicated if the peak to peak cath gradient exceeds 20mmHg
- D. Surgical correction of coarctation is not indicated in the presence of collateral vessels

30

Aortic Coarctation

- 6-8% of all congenital heart disease
- 4/10,000 live births
- Male: Female 2:1
- Diffuse arteriopathy
- **Hypertension**
- Berry aneurysm screening

Associated abnormalities:

- Bicuspid aortic valve (50-60%)
- Mitral valve abnormalities
- Subaortic membrane
- VSD, PDA
- Aortic arch anomalies/ aberrant subclavians

Guidelines for intervention

CLASS I:

- Peak to peak gradient ≥ 20 mmHg by catheterization
- Gradient <20mmHg with evidence of collaterals
- · Persistent hypertension

Role for Functional testing? Exercise ABIs?

Percutaneous Interventional approaches

· Coarctation Stenting:

Images courtesy Ignacio Inglessis, MD

Coarctation of aorta: take home points

- Think about coarctation among patients with BAV
- Search for associated abnormalities
- **Always evaluate descending aorta with Doppler
- **Always evaluate abdominal aortic Doppler profile
- Advanced imaging may be necessary to determine percutaneous vs. surgical candidacy
- Hypertension is common; diastolic dysfunction

Case: 65M with progressive fatigue and heart failure

- Known congenital heart disease and kidney disease
- · He has a leaky valve
- No prior intervention
- Several recent heart failure admissions, presented in cardiogenic shock, cardiorenal syndrome

Putting it all together: [S, L, L] CC-TGA

- Levocardia with normal visceroatrial situs (S)
- Atrioventricular discordance, biatrial dilation
 - Severe systemic TR
- Ventricularterial discordance (L- ventricular looping)
 - Biventricular dilation and dysfunction
- · L transposed great vessels
- Elevated LVSP without LVOT obstruction or PS → significant pulmonary arterial hypertension

Long term issues: CC- TGA (or L-TGA)

- Systemic tricuspid regurgitation
- Systemic RV dysfunction—50% risk of HF by age 35
- · Progressive conduction disease, need for pacer
 - Rate of complete heart block approximately 2%/year

Summary

- ACHD: growing and aging population
- Unrepaired adults are not uncommon, if you are not picking up congenital heart disease you are missing it
- Look for associated lesions

Doreen DeFaria Yeh, M.D. FACC MGH ACHD Program Phone 617-643-7024; 617-726-8510 ddefariayeh @mgh.harvard.edu

45

ACHD Growth Implications

Opotowski JACC. 2009

