Cases: Valve Stenosis Quantitation When the Pieces Don't Fit

Linda D. Gillam, MD, MPH, FACC, FASE Chair, Department of Cardiovascular Medicine Morristown Medical Center/Atlantic Health System

No disclosures

Elevated Gradients Following AVR

Case

- Physical exam:
 - 6'1", 220 lbs, BSA =
 - BP = 120/70, HR 72
 - Chest clear
 - 3/6 ESM
 - Carotids normal volume, ? Delayed

EOA Reference Values for Most Currently Used Aortic Prostheses

Table 3 Normal reference values of EOAs* for prosthetic valves Prosthetic valve size (mm) 19 21 23 25 27 29 Reference Valve type Stented bioprosthetic valves 1.22 1.38 Medtronic Mosaic 1.20 1.65 1.80 2.00 6 Hancock II NA 1.18 1.33 1.55 1.60 6 1.46 Carpentier-Edwards Perimount 1.10 1.30 1.50 1.80 1.80 NA 6 Stentless bioprosthetic valves Medtronic Freestyle 1.15 1.35 1.48 2.00 2.32 NA 6 St Jude Medical Toronto SPV 1.30 1.50 1.70 2.00 2.50 6 0.80 1.80 Prima Edwards 1.10 1.50 2.30 2.80 6 Mechanical valves Medtronic-Hall 1 1 9 1.34 NA NA NA NΔ 6 St Jude Medical Standard 1.04 1.38 1.52 2.08 2.65 3.23 6 St Jude Medical Regent 1.60 2.00 2.20 2.50 3.60 4.40 40 MCRI On-X 1.50 1.70 2.00 2.40 3.20 3.20 41 Carbomedics 1.00 1.54 1.63 1.98 2.41 2.63 6 Sorin Bicarbon NA 1.66 1.96 NA NA NA 42 *Expressed as mean values available in the literature.

Pibarot and Dumesnil, Heart. 2006; 92(8):1022-9.

Can you explain the gradients with Patient Prosthesis Mismatch?

A)Yes

B) No

C) Don't know

Is this Patient Prosthesis Mismatch

A)Yes

B) No

C) Don't know

Prosthesis-Patient Mismatch

Indexed EOA (cm ² /m ²)	P-PM
>0.85	No P-PM
0.66-0.85	Moderate
≤0.65	Severe

- Calculate EOA and compare with reference value for same type and size of prosthesis
- Compare with previous echoes if available
- If EOA = ± reference value, suspect PPM and confirm by calculating indexed EOA (present if < 1.2 cm²/m² for mitral <0.85 cm²/m² for aortic, not validated for tricuspid)
- If EOA significantly < reference value, consider pressure recovery in bi-leaflet prosthesis and/or intrinsic dysfunction
- If dysfunction suspected, evaluate leaflet mobility and integrity using TEE and/or fluoroscopy

Diagnosis

Prosthetic Valve Degeneration

Example of Chart Used to Avoid PPM at Time of Operation

		EO	i by Pro	sthesis siz	e (mm)	
Prosthesis size (mm)	19	21	23	25	27	29
Average EOA (cm ²)	1.1	1.3	1.5	1.8	2.3	2.7
BSA (m ²)						
0.6	1.83	2.17	2.50	3.00	3.83	4.50
0.7	1.57	1.86	2.14	2.57	3.29	3.86
0.8	1.38	1.63	1.88	2.25	2.88	3.38
0.9	1.22	1.44	1.67	2.00	2.56	3.00
1	1.10	1.30	1.50	1.80	2.30	2.70
1.1	1.00	1.18	1.36	1.64	2.09	2.45
1.2	0.92	1.08	1.25	1.50	1.92	2.25
1.3	0.85	1.00	1.15	1.38	1.77	2.08
1.4	0.79	0.93	1.07	1.29	1.64	1.93
1.5	0.73	0.87	1.00	1.20	1.53	1.80
1.6	0.49	0.88	0.88	0.88	0.88	1.69
1.7	0.65	0.76	0.88	1.06	1.35	1.59
1.8	0.61	0.72	0.83	1.00	1.28	1.50
1.9	0.58	0.68	0.79	0.95	1.21	1.42
2	0.55	0.65	0.75	0.90	1.15	1.35
2.1	0.52	0.62	0.71	0.86	1.10	1.29
2.2	0.50	0.59	0.68	0.82	1.05	1.23
2.3	0.48	0.57	0.65	0.78	1.00	1.17
2.4	0.46	0.54	0.63	0.75	0.96	1.13
2.5	0.44	0.52	0.60	0.72	0.92	1.08

Similar story, different patient

Case 2

Mismatch between symptoms and echo findings

- 72 yo male who underwent "elective" mitral valve repair for severe mitral regurgitation due to myxomatous mitral valve disease
- Repair done at high volume center of excellence with "excellent" result
- Post-operatively new dyspnea on exertion
- PE unremarkable (HR 72 NSR)

What would you do next?

- A) Offer reassurance
- B) TEE
- C) Pulmonary function tests
- D) Chest CT
- E) Stress echo

What would you do next?

- A) Offer reassurance
- B) TEE
- C) Pulmonary function tests
- D) Chest CT
- E) Stress echo

Stress response

- Bicycle stress attempted, could not bicycle (knee pain)
- Switched to Bruce –completed 4 mins
- Stopped due to dyspnea
- Peak HR 121
- Peak BP 150/80
- Post BNP 400 pg/ml

Conclusion

latrogenic mitral stenosis

Indications for Stress Echo in MS

- Discordance between resting assessment of severity (gradient, valve area, PAP) and symptoms
- Assess adequacy of rate control
- May be helpful in predicting ability to cope with pregnancy

AS Severity

	Mild	Moderate	Severe
Mean Gradient mmHg	<20	20-39	≥40
AVA cm²	1.5 – 2.0	1-1.5	≤1.0
Peak gradient mmHg	<36	36-63	≥64

Normal aortic valve area = 3-4 cm²

Derived Hemodynamics

- Peak gradient = 31 mmHg
- Mean gradient = 19 mmHg
- AV VTI = 79.4 cm
- LVOT VTI 13.5 cm (peak 0.62)
- SV = 56 cc (31 cc/m²)
- Calculated AVA = 0.7 cm²

Diagnosis

Low gradient, low stroke volume, preserved LVEF severe aortic stenosis with low SV due to MR

Summary

• It is important to reconcile discordant estimates of the severity of valve stenosis

