Expert Consensus for MMI Evaluation of Adult Patients During and After Cancer Rx

Vincent L. Sorrell, MD
Anthony N. DeMaria Professor of Medicine
University of Kentucky / Gill Heart & Vascular Institute
Assistant Chief, Division of Cardiovascular Medicine
Chair, Cardiac Imaging for the Academic Service Line

Disclosures
No Real or Potential Conflict of Interests for this Talk
“CTRCD”

Cancer Therapy Related Cardiac Dysfunction

Outline

Cancer and the Cardiovascular Specialist
- Radiation therapy effects
- Chemotherapeutics (and the CTRCD definition)

Complementary role of Multimodality Imaging
- Review of ASE / ESE Guidelines (#10 key points)
- Specific focus on Echo (3D, Speckle-tracking)

Case Example (impact of GLS)
Two most common Deadly Diseases

Nearly ~1 million pts / yr receive anthracycline Rx (a ~5% risk = 50,000)

AHA Heart Statistics. Circulation

QUESTION

Myocardial damage after anthracycline administration occurs when?

A. Within the first few hours of the initial dose
B. After 250 g/m2
C. Between 250-400 g/m2
D. After >400 g/m2
E. Highly variable & occasionally not at all
ANSWER

Myocardial damage after anthracycline administration occurs when?

A. *Within the first few hours of the initial dose*
B. After 250 g/m²
C. Between 250-400 g/m²
D. After >400 g/m²
E. Highly variable & occasionally not at all

CHEMOTHERAPY history

- Myocardial damage is **immediate** after anthracycline Rx but **significant cardiac reserve** limits detection (EF)
- 1960’s: life-saving chemotherapy causes cardiac toxicity
- Oncologists learned to **limit doses** to avoid this
- 1970’s: serial EMB best Se/Sp
- **Natural improvement** in drugs (**less doses**) and imaging (**MUGA / Echo**) made risk/benefit EMB **unfavorable**
- Thus, **cardiac damage** may not be seen with routine testing or may require **years** after Rx (childhood survivors)
Balancing Act of Goals

MUGA / RNA

10 unit fall in LVEF or <50%

15% of high risk pts developed CHF within 1Y after Rx

75 1095 mg/M2 → CHF +

30 880 mg/M2 → CHF -

Total cumulative dose of Doxo causing CHF was not very different from doses that did not
KEY POINT #1 - definition

Highly effective chemo may cause CTRCD:

1. Type I CTRCD (e.g. anthracyclines)
 - Dose dependent, cell apoptosis, irreversible
 - Early detection & prompt Rx may prevent HF

2. Type II CTRCD (e.g. trastuzumab)
 - Not dose dependent, no apoptosis, ~reversible

DEFINITION: CTRCD

Universal LVEF Threshold

- Confirmed drop in LVEF >10 points to <53%
 - Need to confirm with REPEAT “cardiac imaging” 2-3 wks after initial study showing the fall in LVEF

- Symptomatic vs Asymptomatic CTRCD

- Reversible (to within 5% baseline)

- Partial (improved >10%; not to within 5% baseline)

- Irreversible (remains within 10% nadir)
KEY POINT #2 – LV systole

- Echocardiography: **method of choice** for the evaluation **before, during, and after** cancer therapy
- Accurate calculation of LVEF should be done with the **best method** in your echo lab (3DE recommended)
- If 2DE, modified biplane Simpson’s is recommended
- LVEF should be combined with **WMSI calculation**
- If no STE (GLS), **MAPSE** (M-mode) and/or **DTI (s’)** of the mitral annulus is recommended

LVEF by 2DE often **fails to detect small changes** in LV contractility
Reduced Ejection Fraction = extensive LV damage

*3DE

LV Systolic Function

*GLS via 2D Strain / STE
KEY POINT #3 - Valves

- Valves should be carefully evaluated
- Patients with *baseline (or changing) valve findings during chemo* require careful re-evaluation with serial echo during and after the course of Rx

PATIENT CASE

40F with multiple cycles of chemoRx and BMT
KEY POINT #4 - pericardium

- Pericardial disease: consider metastasis or effect from chemo and/or radiotherapy
- Pericardial effusion should be quantified / graded
- Echo / Doppler signs of tamponade should be investigated, particularly in malignant effusions
- CMR: useful to evaluate 1\textdegree
cardiac tumors w/wo compromise of the pericardium; if ‘constriction’ dx remains uncertain after echocardiography

65F; Breast Ca; p-eff found on CT; SBP ~100

Ms Jones

Ms Smith
What about Ms. Williams?

KEY POINT #5 – 3DE

- **3D echo** is the preferred technique for serial LVEF to detect CTRCD
- Advantages include better accuracy (detecting LVEF below LLN), reproducibility, and lower temporal variability compared with 2DE
- Costs, availability, reliance on image quality, and training currently limits wide application of 3DE
3D ECHOCARDIOGRAPHY

- Biplane Simpson similar to 3D if normal LV shape
 - In pts with LVEF <50% by CMR:
 - 3DE: sensitivity = 53%; False (-) rate 47%
 - 2DE: sensitivity = 25%; False (-) rate 75%

- 2D vs 3D serial evaluation of Chemo pts
 - Reproducibility 3DE 4.9% (vs 2DE 10%)
 - Lowest inter- & intra-variability and Highest test-retest

Hot off the Presses... Lorenzini JASE 2017

LVEF variability by 3DE: confounding factor for CTRCD dx
- Different software should not be interchanged
- GLS: offers predictive value for subsequent cardiotoxicity
KEY POINT #6 - contrast

- UCA is useful for endocardial dropout
- Recommended when two contiguous LV segments are not well visualized on apical images
- Contrast agents are not recommended with 3DE in the serial follow-up of patients with cancer

Contrast

Impacts LV WT and LVd
KEY POINT #7 – Stress echo

- **Stress echo** may help evaluate pts with IM / high pretest prob for CAD receiving Rx that cause ischemia (*fluorouracil, bevacizumab, sorafenib, sunitinib*)

- Stress echo may help determine *contractile reserve* of patients with CTRCD
KEY POINT #8 - Strain

- Strain should be measured with 2D STE > DTI
- GLS preferred to detect subclinical LV dysfunction
- Measures during chemo should be directly side-by-side compared with baseline value
 - Relative % reduction GLS <8% not meaningful (-20.0 > -8.4)
 - Relative % >15% very likely to be abnormal (-20.0 > -17.0)
 - No baseline exam, < -19% predicts later CTRCD
- For STE, use the same US machine

SPECKLE TRACKING

- There are > 20 peer-reviewed reports on deformation indices in detection of subclinical cardiotoxicity in pts treated for cancer
- Decrease in myocardial systolic function is rapid (within 2 hours of first dose) – 10-20%
 - This precedes reduced LVEF; or may occur without low LVEF
 - No preference to subendo, midmyo, or subepi (consistent with biopsy data of diffuse apoptosis)

SPECKLE TRACKING

GLS <16%

- Meta-Analysis: 24 articles
 - Normal GLS -15.9% to -22.1% (mean -19.7%)
 - There were NO normal patients with GLS <15.9%

It is now recommended to give preference for GLS when a discrepancy exists between LVEF

Yingchoncharoen T, Agarwal S, Popovic ZB, Marwick TH. JASE 2013;26:185-191

PATIENT CASE - EF

40F with multiple cycles of chemoRx

- 55% February
- 55% ~SOA April
- 50% SOA May
- 25% CHF August
PATIENT CASE - GLS

40F with multiple cycles of chemoRx

-19% February
-16% ~SOA April
-13% SOA May
-8% CHF August

PATIENT CASE

40F with multiple cycles of chemoRx

55% 55% 50% LVEF

-19 -16 -13 -8
Feb April May August

25%
Hot off the presses...

Following chemotherapy for BMT:
Myocardial deformation analysis detects subclinical bi-V dys - 1 month after BMT, mainly subendocardial layer - 3 months, subepicardial layer and LV twist are impaired

Suggests progressive subclinical cardiac dysfunction that precedes small reductions in LVEF

Abn GLS at 1 month predicts low LVEF at follow-up

http://dx.doi.org/10.1016/j.echo.2017.07.010

KEY POINT #9 - Troponin

- Elevated troponin may be a sensitive measure for early detection of CTRCD
- Natriuretic peptides, a marker of elevated filling pressures, are less consistent markers of early CTRCD
TROPONIN cardiac biomarkers

- Troponin: gold standard for **myocardial injury**
 - Predicts development of LV dysfunction after chemo
- N = 703; TnI each cycle (b/l, 12, 24, 36, 72hrs; 1mo)
- **106/111 adverse CV events** in TnI elevation groups
 - 37% early (<72hrs) and 84% late (1month)
 - PPV 84%; NPV 99% (**identifies low risk pts**)

Note: “persistent” worse than “transient” TnI increase values

KEY POINT #10 - MUGA

- LVEF by MUGA is **highly reproducible**
- Main **limitations** are radiation, lack of ability to report on **pericardium, valves, and RV**
RADIATION THERAPY

- Radiation exposure to the thorax (Hodgkins, L>R breast)
 - Effective; used in >50% of cancer patients
 - High doses, younger age, coexistent CV risks
- Creating a growing population of CV dz
 - Pericardium
 - Coronaries
 - Vasculopathy
 - VHD
 - Cardiomyopathy
 - Conduction diseases

52M; 18 yrs post XRT
CONCLUSIONS

- Multi-specialty cooperation
- Oncologists make final call with Cardiology input
- XRT results in ~20 year delayed Ca++ presentations
- Definition of CTRCD is now defined
 - LVEF fall 10%, <53%, repeat imaging within 3 wks
- 3D Full Volume = guideline recommended
- Global Longitudinal Strain = guideline recommended

THANK YOU

South Rim, Grand Canyon
Photo: Vince Sorrell
EXTRA MATERIAL

HIGH RISK PATIENTS

- **Who should be screened by cardiology?**
 - **QUESTION?** All pts versus high risk population?
 - Risk: age >65, HBP, DM, CAD, low / low normal EF, early decline, pt planning high dose (>350) or combined Rx
 - Consider cardio-protective therapies

- **Should TnI be considered another guide?**

- **N = 413; Type I Rx; N = 114 (24%) with TnI +**
 - Randomized to ACEi Rx (<1 mo after Rx) versus no Rx
 - LV size, LVEF, events **(2% vs 52%)** were improved

Cardinale D, et al. Circulation 2006;114:2474-2481
INTEGRATED APPROACH

- Integrated approach combines modern imaging with biomarkers for optimal subclinical detection and early preventive Rx
 - Used in “series”: reduction in frequency of imaging
 - Used in “parallel”: strategy for enhanced surveillance
- GLS < -19% or TnI + 93% specific for CTRCD
 - Versus 73% either parameter alone
 - Sensitivity 87% compared to 48% or 74% individually

PUTTING IT ALL TOGETHER

- Close corroboration between Onco, Card, and IM
- Baseline evaluation in all preferred; high risk in min
- This should include ECHO
 - Echo should include 3D and GLS / GCS; RWMA; contrast?
 - If images suboptimal (or borderline), perform CMR
- LVEF <50% or GLS <16% or TnI + … CARD CONSULT
 - Strongly consider cardioprotective Rx

Systemic Effects of Anti-VEGF Therapy

Table #1. Characteristics of Type I and II Chemotherapy-Related Cardiac Dysfunction

<table>
<thead>
<tr>
<th>Characteristic agent</th>
<th>Type I myocardial damage</th>
<th>Type II myocardial damage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical course and typical response to anti-remodeling therapy (BB, ACE-1)</td>
<td>May stabilize, but underlying damage appears to be permanent and irreversible; recurrence in months or years may be related to sequential cardiac stress</td>
<td>High likelihood of recovery (to or near baseline cardiac status) in 2-4 months after interruption (reversible)</td>
</tr>
<tr>
<td>Dose effects</td>
<td>Cumulative, dose related</td>
<td>Not dose related</td>
</tr>
<tr>
<td>Effect of re-challenge</td>
<td>High probability of recurrent dysfunction that is progressive; may result in intractable heart failure or death</td>
<td>Increasing evidence for the relative safety of re-challenge (additional data needed)</td>
</tr>
<tr>
<td>Ultrastructure</td>
<td>Vacuoles; myofibrillar disarray and dropout; necrosis (changes resolve over time)</td>
<td>No apparent ultrastructural abnormalities (though not thoroughly studied)</td>
</tr>
</tbody>
</table>

Abbreviation: CRCD, chemotherapy-related cardiac dysfunction.

Lung cancer (bevacizumab)
- Inhibition of tumor growth, tumor cavitation

Hepatocellular carcinoma (sorafenib)
- Tumor necrosis

Renal cell carcinoma (sunitinib)
- Tumor shrinkage, tumor cell necrosis

Colorectal cancer (bevacizumab)
- Deceleration of tumor growth, efficient chemotherapy delivery

Normal Tissues
(VEGF constitutively expressed)

- Hypertensive remodeling
- Microvascular rarefaction
- Cardiomyopathy (sunitinib and sorafenib)

Microcirculation: 1. normal arteriole, 2. functional rarefaction (endothelial dysfunction, vasoconstriction), 3. anatomic rarefaction

- Thrombotic microangiopathy
- Glomerulopathy / glomerulonephritis
- Proteinuria
- Hypertensive nephropathy
Appendix #1. Recommended Cardio-Oncology Echo Protocol

Standard Transthoracic Echo
- In accordance with ASE/EAE guidelines and ICAEL

2D Strain Imaging Acquisition
- Apical 4, 2, 3 chamber views
 - Acquire at least 3 cardiac cycles
 - Images obtained simultaneously maintaining the same 2D frame rate and imaging depth
 - FPS between 40 – 60 or at least 46% of HR
- Aortic VTI (aortic ejection time)

2D Strain Imaging Analysis
- Quantify segmental and global strain (GLS)
- Display the segmental strain curves from apical views in a quad format
- Display the global strain in a bull’s eyes plot

2D Strain Imaging Pitfalls
- Ectopy
 - Breathing Translation

3D Imaging Acquisition
- Apical 4 chamber full volume to assess LV volumes and EF calculations
- Single and multibeats optimizing spatial and temporal resolution

Reporting
- 2D Biplane Simpson’s method/3D EF
- GLS

RADIATION THERAPY

X-ray induced DNA breaks = apoptosis

Radiation-Induced Cardiovascular Injury
Risk factors
- Higher radiation doses
- Minimal or no cardiac protection techniques at time of irradiation
- Cardiac volume exposed to irradiation
- Young age at irradiation
- Increasing interval from time of radiation
- Pre-existing cardiovascular risk factors

Acute Cardiac Injury
(less common)
- Acute pericarditis
- Myocarditis

Late Cardiac Injury
- Constrictive pericarditis
- Restrictive cardiomyopathy
- Coronary artery disease
- Valvular disease
- Conduction disturbances

Medium or Large Vessel Vasculopathy
- Thoracic aortic calcification (porcelain aorta)
- Carotid/axillary/subclavian artery stenosis

Groarke JD, et al. CV complications of radiation therapy… Eur Heart J. 2013
Thoracic: suspect cardiac injury
- CAD: Sx-guided (ACS – invasive / non-ACS – functional)
 - Asymptomatic: CCTA, CACS (or functional) 5yrs post XRT
 - Pericardium: Sx-guided only (TTE +/- CMR or CCT)
 - VHD: Routine TTE 10yrs post-XRT (sooner if Sx)
- Pericardium: Sx-guided only (TTE +/- CMR or CCT)
- VHD: Routine TTE 10yrs post-XRT (sooner if Sx)

Head and Neck: suspect arterial disease
- CVA Sx or carotid bruit: Carotid US +/- MRA/CTA
- No Sx but PAD and/or RF’s AND 10yrs post: US +/- MR/CT

ALL: CT chest PRIOR to CT surgery (guide surgical risk: mediastinal fibrosis, porcelain Ao)

CTRCD Guidelines

- EMB used for Dx 1970’s (replaced by serial LVEF)
 - Variable: LVEF measures / onset of dysfunction / cardiac reserve
- Diagnosis: >10% fall in LVEF to <53% on 2 serial echo’s
 - Subcategorized as Reversible, Partially reversible, Irreversible
- Type of Injury: Type I vs Type II CTRCD
 - Randomized to ACEi Rx (<1 mo after Rx) versus no Rx
 - LV size, LVEF, events (2% vs 52%) were improved
ECHO Modalities

- **LVEF using biplane Simpson or 3DE**
 - Use contrast as needed (? 2 segments apical views)
- **Include WMSI** since subtle WMA commonly missed on routine 2DE
- **3DE: better accuracy for LVEF <50%**
 - Better reproducibility / lower variability vs 2DE
 - Do not combine with contrast (basal drop out limits use)

Subclinical LVD

- Imaging:
 - LVEF 50-54%: increased cardiac event rates
 - Despite DDfx preceding LVd, evidence DOES NOT support DDfx indices for prediction of CTRCD
 - STRAIN (myo deformation): STE preferred > DTI
 - GLS best predictor of early CTRCD (compared serially)
 - <8% reduction is NOT considered clinically meaningful
DEFORMATION IMAGING

- N=81; breast cancer; Type I and II agents
- Follow up: 15 months; quarterly echo’s
- Post-Rx GLS predicted 100% heart failure (all <=-19%)
 - Also predicted LVEF <55% or decrease >10% at f/u
 - Unknown if this persists longer
- GLS was predictive, but GCS and radial strain wasn’t
 - Radial strain – not sensitive enough (fractional thickening)
 - GCS is a compensatory mechanism for impaired GLS

Cardiac monitoring in patient receiving type 1 regimen

- CHF
 - Confirmed drop of 10 points to LVEF < 50% (*)
 - GLS < 16%

- Asymptomatic drop of 10 points to LVEF 50 – 54% **
 - Relative drop GLS >15% as compared to baseline
 - + troponin

- LVEF > 55%
 - GLS > 19%
 - Relative drop of GLS of <8% as compared to baseline
 - - Troponins

- Cancer treatment at discretion of clinician
- Cardiology consultation

No evidence of sub-clinical LV dysfunction

* Consider confirmation with other modality 3D / MRI / MUGA.

Initiation of trastuzumab

Baseline evaluation of systolic function
LVEF: 3D (preferred) / 2D (consider contrast)
GLS, Troponin I

LVEF < 50%*
- Cancer treatment at discretion of clinician
- Cardiology consultation
- Follow up with LVEF/GLS before each trastuzumab treatment, or troponin after, then at 6 months of follow up.

LVEF 50-54%
- Follow up every 3 months with LVEF/GLS during therapy and then at MD discretion
- If GLS<19 consider increased echo frequency and measure troponins

LVEF > 55%
- Follow up every 3 months with LVEF/GLS during therapy.
- If GLS < 19, consider increased echo frequency and measure troponins

* Consider confirmation by 3D/MUGA/MRI
Initiation of trastuzumab after regimen associated with Type 1 toxicity

Baseline evaluation of systolic function
LVEF: 3D (preferred)/ 2D (consider contrast)
GLS, Troponin I

- LVEF < 50%*
 - GLS <16%
 - Trastuzumab at discretion of clinician
 - Cardiology consultation

- EF 50-54%
 - + Tn I
 - Consider Cardiology consultation
 - F/U every 3 months during therapy.
 - F/U up at 6 months after completion of therapy and then at MD discretion.

- LVEF 55%
 - GLS>19%
 - Tn I
 - F/U every 3 months during therapy
 - F/U at 6 months after end of therapy and then at MD discretion.

* Consider confirmation by 3D/MUGA/MRI
** Consider more frequent monitoring if dose >300mg/m²

Early detection of toxicity using biomarkers

Baseline cardiologic evaluation, ECHO

Type I and/or IIa regimen

TnI evaluation at each cycle

- TnI POS
 - Cardiology consultation
 - ECHO at end CT, 3, 6, 9 months
 - Clinical evaluation ± ECHO 6 m

- TnI NEG
 - ECHO 6 m

3DE

Nuclear – MUGA / eRNA
Future Imaging

- 123I-mIBG - Sympathetic neuronal imaging
- 111In-antimyosin – myocyte necrosis
- 99m Tc-annexin V – marker of apoptosis
- 111In-traxtuzumab – HER2/neu receptor marker

Potential methods to identify pre-clinical cardiotoxicity and monitor Rx directed at reducing apoptosis