Rheumatic and Degenerative/Calcific MS

OMAR KHALIQUE, MD, FACC, FASE DIRECTOR, MULTI-MODALITY CARDIAC IMAGING STRUCTURAL HEART AND VALVE CENTER COLUMBIA UNIVERSITY MEDICAL CENTER

Disclosures

Speaker's bureau, Edwards lifesciences

Rheumatic MS

- Most common cause of MS worldwide
- Immune response 2/2 bacterial infection
- Valve inflammation due to cross-reactivity between leaflet tissue and streptococcal antigen
- Begins with formation of tiny nodules along the leaflet coaptation points, then fibrin deposition on leaflets
- ► Over years to decades: fusion of commissures; thickening, fibrosis and calcification of leaflet cusps; thickening, fusion and shortening of chordae → domed appearance
- Regurgitant process early on, then progresses to stenosis
- Up to 75% of patients with documented recurrences of rheumatic fever have valvular disease at 45 y f/u

Measurement			200000		
	Units	Formula / Method	Concept	Advantages	Disadvantages
Valve area - planimetry by 2D echo	cmª	tracing mitral onfice using 2D echo	direct measurement of anatomic MVA	accuracy independence from other factors	 experience required not always feasible (poor acoustic window, severe valve calcification)
pressure half-time	cm ²	220 / T ₁₂	rate of decrease of transmitral flow is inversely proportional to MVA	easy to obtain	dependence on other factors (AR, LA compliance, LV diastolic function)
continuity equation	cm²	MVA = (CSA _{LVOT}) (VTI _{Aerte}) / VTI _{Mine}	volume flows through mitral and aprtic prifices are equal	independence from flow conditions	- multiple measurements (sources of errors) - not valid if significant AR or MR
- PISA	cm²	$\begin{split} MVA &= \mathfrak{n}(r^2) (V_{a \text{large}}) / \\ peak V_{Minul} \cdot \mathfrak{n} / 180^{\circ} \end{split}$	MVA assessed by dwiding mitral volume flow by the maximum velocity of diastolic mitral flow	independence from flow conditions	technically difficult
Mean gradient	mm Hg	$\Delta P = \sum 4 v^a / N$	pressure gradient calculated from velocity using the Bernoulli equation	easy to obtain	dependent on heart rate and flow conditions
Systolic pulmonary artery pressure	mm Hg	sPAP = 4v ² _{troosed} + RA pressure	addition of RA pressure and maximum gradient between RV and RA	obtained in most patients with MS	 arbitrary estimation of RA pressure no estimation of pulmonary vascular resistance
Mean gradient and systolic pulmonary artery pressure at exercise	mm Hg	$\begin{array}{l} \Delta P = \sum A v^2 / N \\ s P A P = A v^2_{Transit} \\ + R A \ pressure \end{array}$	assessment of gradient and sPAP for increasing workload	incremental value in assessment of tolerance	 experience required lack of validation for decision- making
Valve resistance	dyne. sec ¹ cm ⁻⁵	Nvres = P _{vinel} / (CSA _{LV0T})(VTI _{Aaria})/ DFT)	resistance to flow caused by MS	initially suggested to be less flow- dependent, but not confirmed	no prognostic value no clear threshold for severity no additional value vs. valve area

2009 ASE/EAE guidelines

Rheumatic MS Evaluation by echo

- ▶ MVA planimetry (2D/3D) at leaflet tips
- ▶ Pressure ¹/₂ time (220/PHT): affected by
- Continuity equation (LV or RV SV/CW MV VTI)
- ▶ Mean gradients: affected by HR

Stage	Definition	Valve Anatomy	Valve Hemodynamics	Hemodynamic Consequences	Symptoms
A	At risk of MS	· Mild valve doming during diastole	 Normal transmitral flow velocity 	None	None
В	Progressive MS	Rheumatic valve changes with commissural fusion and diastolic doming of the mitral valve leaflets Planimete red MVA >1.5 cm ²	 Increased transmittal flow velocities MVA >1.5 cm² Diastolic pressure half-time <150 ms 	Mild-to-moderate LA enlargement Normal pulmonary pressure at rest	None
C	Asymptomatic seven: MS	Rheumatic valve changes with commissural fusion and diastolic doming of the mitral valve leaffets Planimetered MVA ≤1.5 cm ² (MVA ≤1.0 cm ² with very severe MS)	MVA ≤1.5 cm ² (MVA ≤1.0 cm ² with very severe MS) Diastolic pressure half-time ≥150 ms (Diastolic pressure half-time ≥220 ms with very severe MS)	Severe LA enlargement Elevated PASP >30 mm Hg	• None
D	Symptomatic sovere MS	Rheumatic valve changes with commissural fusion and diastolic doming of the mitral valve leaffets Planimetered MVA ≤1.5 cm ²	MVA ≤1.5 cm ² (MVA ≤1.0 cm ² with very severe MS) Diastolic pressure half-time ≥150 ms (Diastolic pressure half-time ≥220 ms with very severe MS)	Severe LA enlargement Elevated PASP >30 mm Hg	 Decreases exercise tolerance Exertional dyspne a

LA indicates left atrial; LV, left ventricular; MS, mitral stenosis; MVA, mitral valve area; and PASP, pulmonary artery systelic pressure

2014 ACC/AHA guidelines

Wilkins Score

- •The degree of leaflet rigidity (0-4)
- •The severity of leaflet thickening (0-4)
- •The amount of leaflet calcification (0-4)
- •The extent of subvalvular thickening (0-4)
- Better outcomes with PBMV with score <= 8 (no severe MR)

(Circulation. 2002;105(12):1465).

Score >= 10 independently predicts severe MR after PBMV

Table 1. Echocardiographic Score for Severe Mitral Regurgitation After Percutaneous Mitral Valvulotomy

- I-II. Valvular thickening (score each leaffet separately)
- 1. Leaflet near normal (4-5 mm) or with only a thick segment
- 2. Leaflet fibrotic and/or calcified evenly; no thin areas
- Leaflet fibrotic and/or calcified with uneven distribution; thinner segments are mildly thickened (5–8 mm)
- Leaflet fibrotic and/or calcified with uneven distribution; thinner segments are near normal (4-5 mm)
- III. Commissural calcification
- 1. Fibrosis and/or calcium in only one commissure
- 2. Both commissures mildly affected
- 3. Calcium in both commissures, one markedly affected 4. Calcium in both commissures, both markedly affected
- Calculat in both commiss
 IV. Subvalvular disease
- Minimal thickening of chordal structures just below the valve
- Thickening of chordae extending up to one-third of chordal length
- Thickening of chordae calculating up to one time of
 Thickening to the distal third of the chordae
- Extensive thickening and shortening of all chordae extending down to the papillary muscle

The total score is the sum of these echocardiographic features (maximum 16).

Padial et al. JACC Vol. 27, No. 5 1225 April 1996:1225-31

ACC/AHA Class I recs

- 1. Percutaneous mitral balloon commissurotomy is recommended for symptomatic patients with severe MS (mitral valve area <=1.5 cm2, stage D) and favorable valve morphology in the absence of left atrial thrombus or moderate-to-severe MR(280–284,286,328). (Level of Evidence: A)
- Mitral valve surgery (repair, commissurotomy, or valvereplacement) is indicated in severely symptomatic patients(NYHA class III to IV) with severe MS (mitral valve area <=1.5cm2, stage D) who are not high risk for surgery and who are notcandidates for or who have failed previous percutaneous mitralballoon commissurotomy (319–324). (Level of Evidence: B)
- Concomitant mitral valve surgery is indicated for patients withsevereMS (mitral valve area ,=1.5 cm2, stage C or D) undergoingcardiac surgery for other indications. (Level of Evidence: C)

Clinical history

- ▶ 48 f
- ▶ USOH until she had a stroke at age 37, found to have AF
- Eventually discovered to have rheumatic MS
- Now with progressive symptoms

Borderline Wilkins score

The degree of leaflet rigidity (0-4): 2-3 •The severity of leaflet thickening (0-4): 2 •The amount of leaflet calcification (0-4): 2 •The extent of subvalvular thickening (0-4): 2 Total: 8-9

MVA = 0.98 cm2 by 3D planimetry, continuity = 0.96 cm2, PHT = 1.2 cm2

MR EROA = 14 mm2

postMVA = 1.3 cm2

No more inflations performed 2/2 moderate MR

Degenerative/calcific MS

ASA/EAE 2009 guidelines - DMS

"It [degenerative MS] is frequently observed in the elderlyand associated with hypertension, atherosclerotic disease, and sometimes AS. However, calcification of the mitral annulus has few or no haemodynamic consequences when isolated and causes more often MR than MS. In rare cases, degenerative MS has haemodynamic consequences when leaflet thickening and/or calcification are associated. This is required to cause restriction of leaflet motion since"

Degenerative/Calcific MS

- Mitral annular calcification extending onto the leaflet apparatus creating mitral stenosis
- Not much data or info on pathophysiology
- Associated with AS and CAD (atherosclerosis), age
- More common cause of MS in developed world vs developing (RHD)
- ▶ ~ 12-16% of MS cases are due to DMS

Transcatheter Mitral Valve Replacement in Native Mitral Valve Disease With Severe Mitral Annular Calcification

Results From the First Multicenter Global Registry

Mayra Guerrero, MD," Danny Dvir, MD," Dominique Himbert, MD," Marina Urena, MD," Mackram Eleid, MD," Dee Dee Wang, MD," Adam Greenbaum, MD," Vaikom S. Mahadevan, MBBS, MD, ⁴ David Holzhey, MD, PHD,⁸ Daniel O'Hair, MD,^b Nicolas Dumonteil, MD,¹ Josep Rodés-Cabau, MD,¹ Nicolo Piazza, MD,^k Jose H. Palma, MD, PHD,⁹ Augustin DeLago, MD,⁴⁰ Enrico Ferrari, MD,⁴⁰ Adam Witkowski, MD, PHD,⁹ Olaf Wendler, MD, PHD,⁹ Ran Komowski, MD,⁴⁰ Pedro Martinez-Clark, MD,⁴ Daniel Ciaburri, MD,⁴ Richard Shemin, MD,¹ Sami Alnasser, MD,⁴⁰ David McAllister, DO,⁴⁰ Martin Bena, MD,⁴⁰ Faraz Kerendi, MD,⁴⁰ Gregory Pavlides, MD,⁷ Jose J. Sobrinho, MD,⁴⁰ Guilherme F. Attizzani, MD,⁴⁰ Isaac George, MD,⁴⁰ George Nickenig, MD,⁴⁰ Amir-Ali Fassa, MD,⁴⁴ Alain Cribier, MD,⁴⁰ Vinnie Bapat, MD,⁴⁷ Ted Feldman, MD,⁴⁰ Charanjit Rihal, MD,⁴ Alec Vahanian, MD,⁵ John Webb, MD,⁵ William O'Neill, MD

JACC: CARDIOVASCULAR INTERVENTIONS © 2016 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER VOL. 9, NO. 13, 2016 ISSN 1936-8798/\$36.00 http://dx.dol.org/10.1016/j.jcin.2016.04.022

TABLE 1 Baseline Patient Characteristics	78+13
Ayo, yo Remale	
Dabetes	wujer (po) 2451 (39)
Atrial fibrillation	24(5)(4,4)
Peripheral arterial disease	19 (60 (3.7)
Chronic obstructive pulmorary disease	28(61 (45.9)
Chronic renal failure	32/62 (5.6)
Prior TIA or stroke	10/60 (16.7)
Hospitalization due to heart failure during prior 12 months	43/60 (1.7)
Ptfor CABG	20(6) (32.8)
Prior AV R	34/62 (54.8)
TAVR	9(34 (26.5)
SAVR	Σβ4 (73.9)
Mechanical	10/25 (40)
Bioprosthetic	Thirty-day all-cause mortality was 29.7%
Receiving long-term anticoagulation	
Prior MV balloon commissurotomy/valvuloplasty	6/58 (0.3)
STS score NYHA functional class	14.4 ± 9.5
NYHA functional class	562(8.1)
	3/b/(4.1) 2462(3)27)
	2490 (38.7) 3350 (35.7)
EF	33/04 (23.4) 595 ± 11.3
Mean MVG	333 ± 11.3 11.4 ± 4.4
WA	118 + 0.5
Systolic PAP, mm Hg	567 + 19
LVOT gradient	64 ± 18.2
3(+) MR	11/61 (18)
4(+) MR	0/61/64

Challenges with echo diagnosis

- Many patients in low flow states (concomitance with severe AS) so that transvalvular gradients are lower than expected for MVA
- Variable degrees of MS with severe MAC
- Difficult to see leaflets on TEE due to acoustic shadowing from MAC
- Planimetry: maximum stenosis may not be at tips of leaflets
- ▶ PHT does not work

Echo Assessment DMS

- MVA by planimetry (2D/3D reconstruction) -CT planimetry
- MVA by continuity (significant MR can cause underestimation)
- ▶ Gradients (low flow)

Case

- ▶ 74 f
- ▶ DM2, OSA, AF, HTN, HLD, Severe AS and CAD s/p CABG/AVR, pHTN
- During prior surgery (6 years prior), MV could not be replaced due to excessive annular calcification
- Increasing symptoms over past several months (exertional dyspnea, edema)
- Admitted for CHF exacerbation and further evaluation

<figure>

MVA = 0.99 cm2 by Xplane

Mean gradient = 11 mm Hg

Plan

Percutanous mitral valve-in-MAC via MITRAL trial (investigational)
 Antegrade (transseptal) access

CT planning (annulus area 396-447 mm2)

Assess risk of LVOT obstruction (neo LVOT)

Mean LVOT gradient = 4 mm Hg

