Echocardiographic Evaluation of Aortic Valve Prosthesis

Amr E Abbas, MD, FACC, FASE, FSCAI, FSVM, RPVI
Co-Director, Echocardiography,
Director, Interventional Cardiology Research,
Beaumont Health System
Associate Professor of Medicine,
OUWB School of Medicine
ASCeXAM/ReASCE 2017
Philadelphia, PA

Pre Questions (1)

• Regarding Aortic Prosthetic Valves
 – A. A routine echocardiogram is required very two years after AVR
 – B. An elevated gradient with a decreased EOA is always suggestive of valvular stenosis
 – C. Transthoracic echocardiogram alone is always sufficient to diagnose valvular stenosis
 – D. It is more challenging to quantify para-valvular versus valvular aortic regurgitation.
Pre Questions (2)

• Patients with Prosthesis-Patient Mismatch
 – A. Have abnormal prosthetic valve function
 – B. Progressively worsen with time
 – C. Have a small valve compared to the demands of their body and cardiac output
 – D. Have a benign condition
Topics of Discussion

• Types and Flow Profiles of Prosthetic Valves
• Echocardiographic Evaluation: Key Points
• Challenges for Evaluation
• Prosthetic Valves Evaluation
 – Elevated gradients
 – Regurgitation
 – Endocarditis
 – Thrombosis versus pannus

Types & Flow Profiles of Prosthetic Valves
Mechanical Vs. Bioprosthetic Vs. Autografts
Types & Flow Profiles of Prosthetic Valves
Mechanical Vs. Bioprosthetic Flow

Localized Pressure Loss and High Gradient in Central Orifice of Bileaflet Mechanical Valve
(?Pressure Recovery)

• Fluoroscopy
ECHO EVALUATION Guidelines

CLASS I
- Initial TTE after AVR (2-4 weeks or sooner if concern for follow up and transfer)
- Repeat TTE for AVR if there is a change in clinical symptoms or signs suggesting dysfunction
- TEE for AVR if there is a change in clinical symptoms or signs suggesting dysfunction

CLASS II
- Annual TTE in bioprosthetic valves after the first 10 years (5 years in prosthetic statement 2008) but not mechanical valves

ECHO EVALUATION: Key Points

- Clinical picture
- Baseline study
- Type and size of valve
- LV chamber
- BP/HR
- Height/weight/BSA
- Exercise echo may be helpful
- Cinefluoroscopy, CT, MRI
ECHO EVALUATION:
Key Points

- Opening and Closing of leaflets or occluders
- Abnormal densities (calcium/mass/vegetation)
- Stability versus rocking motion
- May use Modified versus Simplified Bernoulli
 - $4V_2^2 - 4V_1^2$ Vs. $4V_2^2$
- Attention to flow states & adequate Doppler signals

Echo Evaluation:
Key Points

- Adequate Doppler Signals
 - LVOT obtained away from flow acceleration (0.5 to 1 cm below sewing ring)
 - Multiple planes
 - Off axis view in parasternal view to obtain LVOT diameter/TAVR versus SAVR
 - Eccentric aortic regurgitant jets may require different angles to Doppler
Evaluation of Prosthetic Valves: Challenges

- Large range in what is considered normal
- Mean Gradients produced depend on size and type of valve.
- For any particular patient... it is difficult to differentiate normal from abnormal, hence the need for comparison to older studies
- Shadowing may interfere with assessment of location and amount of regurgitation

Bioprosthetic Valve Abnormalities

- Elevated Gradients
- Regurgitation
- Endocarditis
- Thrombosis
- Pannus
Echocardiographic Evaluation of Elevated Prosthetic Valve Gradients

Comprehensive Evaluation

Peak aortic prosthesis velocity > 3m/s

Jet contour
AT (ms)

DVI ≥0.30
Jet contour >100
Consider PrAV stenosis with:
- Sub-valve narrowing
- Underestimated gradient
- Improper LVOT velocity

Normal PrAV
EOA index
High flow

DVI 0.25 – 0.29
Jet contour <100
Suggests prosthetic aortic valve stenosis

DVI <0.25
Jet contour >100
Consider improper LVOT velocity

PPM

JASE 2009;22(9):975
Parameters Utilized

• Peak prosthetic aortic velocity

- Normal < 3 m/sec
- Abnormal > 3 m/sec

Parameters Utilized

• Doppler Velocity Index

\[\text{Doppler Velocity Index} = \frac{\text{Velocity}_{LVO}}{\text{Velocity}_{jet}} \]
Doppler Velocity Index

1.1/2.8 = 0.39
Normal > 0.3

1/5.5 = 0.18
Abnormal < 0.25

Parameters Utilized

• Jet Contour

Triangular Rounded
Parameters Utilized

• Acceleration Time

<table>
<thead>
<tr>
<th>Time</th>
<th>Normal (< 100 msec)</th>
<th>Abnormal (> 100 msec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 msec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150 msec</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parameters Utilized

• Acceleration time/ ejection time
• AT/ET > 0.4: Prosthetic valve obstruction

<table>
<thead>
<tr>
<th>AT/ET</th>
<th>No Obstruction</th>
<th>Obstruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.290</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.31</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Parameters Utilized

• Effective Orifice Area and iEOA

\[A_2 \text{(EOA)} = \frac{A_1 \times V_1}{V_2} \]

\[\text{iEOA} = \frac{AVA}{BSA} \]

Normal > 1.2 cm\(^2\)
Abnormal < 0.8 cm\(^2\)
Abnormal < 0.6 cm\(^2/m^2\)

Cause of Elevated Gradients Across Aortic Prosthesis

• Errors in Measurement
 – Improper LVOT Velocity
 • Taken too far from flow acceleration
 – Improper AV Velocity (Gradient) Assessment

• Increased Flow
• Pressure Recovery
• Prosthesis patient mismatch
• Prosthesis stenosis
NORMAL PROSTHESIS FUNCTION

Pulsed Doppler LVO

Normal

CW Doppler Prosthetic AV

MG = 22 mmHg
DVI = 0.4
AT = 75 ms
PROSTHETIC STENOSIS

Obstructed

Pulsed Doppler
LVO

CW Doppler
Prosthetic AV

MG = 80 mmHg
DVI = 0.18
AT = 180 ms
Doppler of Prosthetic Aortic Valve Function

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>Possible Stenosis</th>
<th>Suggests Stenosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Velocity</td>
<td>< 3 m/s</td>
<td>3-4 m/sec</td>
<td>> 4 m/s</td>
</tr>
<tr>
<td>Mean Gradient</td>
<td>< 20 mmHg</td>
<td>20-35 mmHg</td>
<td>> 35 mmHg</td>
</tr>
<tr>
<td>Doppler Velocity Index</td>
<td>> 0.3</td>
<td>0.29-0.25</td>
<td>< 0.25</td>
</tr>
<tr>
<td>Effective Orifice area</td>
<td>> 1.2 cm²</td>
<td>1.2 – 0.8 cm²</td>
<td>< 0.8 cm²</td>
</tr>
<tr>
<td>Contour of Jet</td>
<td>Triangular</td>
<td>Triangular to</td>
<td>Rounded Symmetrical contour</td>
</tr>
<tr>
<td></td>
<td>Early Peaking</td>
<td>intermediate</td>
<td></td>
</tr>
<tr>
<td>Acceleration Time</td>
<td>< 80 ms</td>
<td>80-100 ms</td>
<td>> 100 ms</td>
</tr>
</tbody>
</table>

Mechanisms of Prosthetic Valve Dysfunction

- Wear and tear
- Calcification
- Pannus
- Endocarditis
- Thrombus
CASE PRESENTATIONS

- CASE PRESENTATION (1):
- 81 Y/O with progressive DOE
- PMHx: Rheumatic valve disease, CABG + Mechanical AVR 2003 (19 St Jude Regent Valve)
- TTE: Difficult to visualize mechanical AV
AV VEL=3.2
DI=0.58/3.2=0.18
AT=150msec
Jet Contour: Circular

An approach to prosthetic AV stenosis
An approach to prosthetic AV stenosis

Doppler Parameters of Prosthetic Aortic Valve Function

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>Suggests Stenosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Velocity</td>
<td>< 3 m/s</td>
<td>> 4 m/s</td>
</tr>
<tr>
<td>Mean Gradient</td>
<td>< 20 mmhg</td>
<td>> 35 mmhg</td>
</tr>
<tr>
<td>Doppler Velocity Index</td>
<td>>= 0.3</td>
<td>< 0.25</td>
</tr>
<tr>
<td>Effective Orifice area</td>
<td>> 1.2 cm²</td>
<td>< 0.8 cm²</td>
</tr>
<tr>
<td>Contour of Jet</td>
<td>Triangular</td>
<td>Rounded</td>
</tr>
<tr>
<td></td>
<td>Early Peaking</td>
<td>Symmetrical contour</td>
</tr>
<tr>
<td>Acceleration Time</td>
<td>< 80 ms</td>
<td>> 100 ms</td>
</tr>
</tbody>
</table>
What is your diagnosis?

• A) Normal Prosthetic Valve Function
• B) Prosthesis – Patient Mismatch
• C) High Flow State
• D) Prosthetic Valve Stenosis
• E) Errors of Measurement: Improper LVOT Velocity

Additional Studies Needed?
TEE
Helpful with high gradients and normal motion by Fluoro
• CASE PRESENTATION (2):
 • 67 Y/O F Hx AVR (Bi-Leaflet Mechanical Valve 1998)
 • On Coumadin, difficulty maintaining therapeutic INR
 • Progressive DOE 6 mos
AV VEL = 3.6
DVI = 1.19 / 3.60
DVI = 0.33

Acceleration Time 0.11 sec
Doppler Parameters of Prosthetic Aortic Valve Function

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Normal</th>
<th>Suggests Stenosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Velocity</td>
<td>< 3 m/s</td>
<td>3.6 > 4 m/s</td>
</tr>
<tr>
<td>Mean Gradient</td>
<td>< 20 mmhg</td>
<td>26 > 35 mmhg</td>
</tr>
<tr>
<td>Doppler Velocity Index</td>
<td>>= 0.3</td>
<td>0.33 < 0.25</td>
</tr>
<tr>
<td>Effective Orifice area</td>
<td>> 1.2 cm²</td>
<td>< 0.8 cm²</td>
</tr>
<tr>
<td>Contour of Jet</td>
<td>Triangular</td>
<td>Rounded Symmetrical contour</td>
</tr>
<tr>
<td>Acceleration Time</td>
<td>< 80 ms</td>
<td>110 ms > 100 ms</td>
</tr>
</tbody>
</table>

An approach to prosthetic AV stenosis

- **Peak Prosthetic Aortic Jet Velocity > 3 m/s**
 - **DVI ≥ 0.30**
 - Jet Contour : >100
 - AT (ms) : >100
 - **DVI 0.25 – 0.29**
 - Jet Contour : <100
 - AT (ms) : <100
 - **DVI < 0.25**
 - Jet Contour : >100
 - AT (ms) : <100
An approach to prosthetic AV stenosis

Peak Prosthetic Aortic Jet Velocity > 3 m/s

- **DVI ≥ 0.30**
 - Jet Contour
 - AT (ms) >100
 - Consider PrAV stenosis with
 - Sub-valve narrowing
 - Underestimated gradient
 - Improper LVOT velocity

- **DVI 0.25 – 0.29**
 - AT (ms) <100

- **DVI < 0.25**
 - AT (ms) >100

Original LVOT Velocity Taken Too Close to the AV Prosthesis (*region of sub-valvular acceleration*)
DVI = **Velocity** LVO / AV Jet
DVI = 0.82 / 3.60
DVI = 0.22

Original LVOT Velocity
Taken Too Close to the AV Prosthesis

Doppler Parameters of Prosthetic Aortic Valve Function

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Normal</th>
<th>Suggests Stenosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Velocity</td>
<td>< 3 m/s</td>
<td>> 4 m/s</td>
</tr>
<tr>
<td>Mean Gradient</td>
<td>< 20 mmhg</td>
<td>> 35 mmhg</td>
</tr>
<tr>
<td>Doppler Velocity Index</td>
<td>>= 0.3</td>
<td>< 0.25</td>
</tr>
<tr>
<td>Effective Orifice area</td>
<td>> 1.2 cm²</td>
<td>< 0.8 cm²</td>
</tr>
<tr>
<td>Contour of Jet</td>
<td>Triangular</td>
<td>Rounded</td>
</tr>
<tr>
<td>Early Peaking</td>
<td></td>
<td>Symmetrical contour</td>
</tr>
<tr>
<td>Acceleration Time</td>
<td>< 80 ms</td>
<td>> 100 ms</td>
</tr>
<tr>
<td>0.22</td>
<td></td>
<td>3.6</td>
</tr>
<tr>
<td>110 ms</td>
<td></td>
<td>26</td>
</tr>
</tbody>
</table>
An approach to prosthetic AV stenosis

Peak Prosthetic Aortic Jet Velocity > 3 m/s

- DVI ≥ 0.30
 - Jet Contour
 - AT (ms) >100
 - Consider PrAV stenosis with
 - Sub-valve narrowing
 - Underestimated gradient
 - Improper LVOT velocity*
 - AT (ms) <100
 - Normal PrAV
 - AT (ms) <100
 - Consider improper LVOT velocity**

- DVI 0.25 – 0.29
 - Normal PrAV
 - EOA Index
 - High Flow
 - PPM

- DVI < 0.25
 - Suggests PrAV Stenosis†
 - High Flow
 - PPM
Surgical Findings
Well seated valve with a large amount of tissue ingrowth beneath the valve resulting in a frozen leaflet

An approach to prosthetic AV stenosis
What is your diagnosis?

• A) Patient – Prosthesis Mismatch
• B) Normal Prosthetic Valve Function
• C) High Flow State
• D) Prosthetic Valve Stenosis
• E) Improper LVOT Velocity

What is your diagnosis?

• A) Patient – Prosthesis Mismatch
• B) Normal Prosthetic Valve Function
• C) High Flow State
• D) Prosthetic Valve Stenosis
• E) Improper LVOT Velocity (Prosthetic valve stenosis)
• CASE PRESENTATION (3):
 • 66 Y/O F Hx AVR (St Jude Valve Conduit 2002 for AR)
 • Progressive DOE
• DVI = 0.85/3.4 = 0.25
• AVA VELOCITY = 3.4 m/s

AT = 0.09 sec
Doppler Parameters of Prosthetic Aortic Valve Function

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>Suggests Stenosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Velocity</td>
<td>< 3 m/s</td>
<td>> 4 m/s</td>
</tr>
<tr>
<td>Mean Gradient</td>
<td>< 20 mmhg</td>
<td>> 35 mmhg</td>
</tr>
<tr>
<td>Doppler Velocity Index</td>
<td>>= 0.3</td>
<td>< 0.25</td>
</tr>
<tr>
<td>Effective Orifice area</td>
<td>> 1.2 cm²</td>
<td>< 0.8 cm²</td>
</tr>
<tr>
<td>Contour of Jet</td>
<td>Triangular Early Peaking</td>
<td>Rounded Symmetrical contour</td>
</tr>
<tr>
<td>Acceleration Time</td>
<td>< 80 ms</td>
<td>> 100 ms</td>
</tr>
</tbody>
</table>

Doppler Parameters of Prosthetic Aortic Valve Function

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>Suggests Stenosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Velocity</td>
<td>< 3 m/s</td>
<td>3.4</td>
</tr>
<tr>
<td>Mean Gradient</td>
<td>< 20 mmhg</td>
<td>30</td>
</tr>
<tr>
<td>Doppler Velocity Index</td>
<td>>= 0.3</td>
<td>0.25</td>
</tr>
<tr>
<td>Effective Orifice area</td>
<td>> 1.2 cm²</td>
<td></td>
</tr>
<tr>
<td>Contour of Jet</td>
<td>Triangular Early Peaking</td>
<td>Rounded Symmetrical contour</td>
</tr>
<tr>
<td>Acceleration Time</td>
<td>< 80 ms</td>
<td>90 ms</td>
</tr>
</tbody>
</table>
An approach to prosthetic AV stenosis

Peak Prosthetic Aortic Jet Velocity > 3 m/s

Jet Contour
- DVI ≥ 0.30
 - AT (ms) >100
 - Consider PrAV stenosis with:
 - Sub-valve narrowing
 - Underestimated gradient
 - Improper LVOT velocity
 - Normal PrAV
 - AT (ms) <100
 - DVI 0.25 – 0.29
 - Suggests PrAV stenosis
 - DVI < 0.25
 - Consider Improper LVOT velocity

High Flow PPM

EOA Index

An approach to prosthetic AV stenosis

Peak Prosthetic Aortic Jet Velocity > 3 m/s

Jet Contour
- DVI ≥ 0.30
 - AT (ms) >100
 - Consider PrAV stenosis with:
 - Sub-valve narrowing
 - Underestimated gradient
 - Improper LVOT velocity
 - Normal PrAV
 - AT (ms) <100
 - DVI 0.25 – 0.29
 - Suggests PrAV stenosis
 - DVI < 0.25
 - Consider Improper LVOT velocity

High Flow PPM

EOA Index
An approach to prosthetic AV stenosis

Indexed EOA = 0.78
PPM occurs when:
iEOA < 0.85
Severe if iEOA < 0.65

Prosthetic Aortic Jet Velocity > 3 m/s

DVI 0.25 – 0.29
DVI < 0.25

<100
>100
<100

Normal PrAV
Suggests PrAV Stenosis
Consider Improper LVOT velocity

EOA Index

PPM

High Flow
What is your diagnosis?

• A) **Prosthesis – Patient Mismatch**
• B) Normal Prosthetic Valve Function
• C) High Flow State
• D) Prosthetic Valve Stenosis
• E) Improper LVOT Velocity (Prosthetic valve stenosis)

Patient Prosthesis Mismatch

- AVA velocity: 4.6
- DVI: 1.14/4.6 = 0.25, AVA = 0.4 cm²
- Acceleration Time: 60 msec
Doppler Parameters of Prosthetic Aortic Valve Function

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>Suggests Stenosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Velocity</td>
<td>< 3 m/s</td>
<td>> 4 m/s</td>
</tr>
<tr>
<td>Mean Gradient</td>
<td>< 20 mmhg</td>
<td>> 35 mmhg</td>
</tr>
<tr>
<td>Doppler Velocity Index</td>
<td>>= 0.3</td>
<td>< 0.25</td>
</tr>
<tr>
<td>Effective Orifice area</td>
<td>> 1.2 cm²</td>
<td>< 0.8 cm²</td>
</tr>
<tr>
<td>Contour of Jet</td>
<td>Triangular</td>
<td>Rounded</td>
</tr>
<tr>
<td></td>
<td>Early Peaking</td>
<td>Symmetrical contour</td>
</tr>
<tr>
<td>Acceleration Time</td>
<td>< 80 ms</td>
<td>> 100 ms</td>
</tr>
</tbody>
</table>

Patient Prosthesis Mismatch
Patient Prosthesis Mismatch

- $\Delta P = Q^2/(K \times EOA^2)$
- $Q =$ Flow, $K =$ Constant
- For gradients to remain low, EOA has to accommodate and be proportionate to flow
- At rest, Q is determined by BSA, bigger people have bigger flow
- In patients with large BSA and increased flow, a “too small of a valve” with a small EOA will produce a high gradient:
- Small valves + Big people = High gradients

Patient Prosthesis Mismatch

- Moe common in SAVR versus TAVR
 - PARTNER 28% vs 20%
 - In smaller annulus even more pronounced
 - 36% Vs 19%
CASE PRESENTATION

69 Y/O F Hx AVR (BIOPROSTHETIC BIOCOR 23 MM 2006)

SOB, FATIGUE, NEVER FELT MUCH BETTER AFTER SAVR

BSA 2.2, 6’ 2”

Doppler Parameters of Prosthetic Aortic Valve Function

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Normal</th>
<th>Suggests Stenosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Velocity</td>
<td>< 3 m/s</td>
<td>> 4 m/s</td>
</tr>
<tr>
<td>Mean Gradient</td>
<td>< 20 mmhg</td>
<td>> 35 mmhg</td>
</tr>
<tr>
<td>Doppler Velocity Index</td>
<td>>= 0.3</td>
<td>< 0.25</td>
</tr>
<tr>
<td>Effective Orifice area</td>
<td>> 1.2 cm²</td>
<td>< 0.8 cm²</td>
</tr>
<tr>
<td>Contour of Jet</td>
<td>Triangular</td>
<td>Rounded Symmetrical</td>
</tr>
<tr>
<td>Acceleration Time</td>
<td>< 80 ms</td>
<td>> 100 ms</td>
</tr>
</tbody>
</table>
An approach to prosthetic AV stenosis

Indexed EOA = 0.5
PPM occurs when:
iEOA < 0.85
Severe if iEOA < 0.65

TEE
MRI

SURGERY PRE
Echocardiographic Evaluation of Prosthetic Valve Regurgitation

Types of Regurgitation

• Regurgitation may be
 — Physiological
 — Pathological
• Physiological regurgitation
 — Closing volume (blood displacement by occluder motion)
 — At the hinges of occluder
Types of Regurgitation

• Pathological
 — Central
 • Mostly with bioprosthetic
 • Technical or infection related
 — Paravalvular
 • Either type, usually the site with mechanical
 • Mild is common after surgery (5-20%) and likely insignificant in the absence of infection
 • Usually after calcium debridement, redo, older patients
 • Hemolytic anemia
 • TAVR

Central Aortic Regurgitation
Central Aortic Regurgitation
Paravalvular Aortic Regurgitation

Paravalvular Aortic Regurgitation
Assessment of Prosthetic Aortic Valve Regurgitation: TTE

- Challenging due to
 - Shadowing
 - Eccentric Jet
 - Difficult to quantify paravalvular leak
- Width of vena contracta may be difficult to measure
- Off axis views may be required

Assessment of Prosthetic Aortic Valve Regurgitation

- Jet diameter/LVO diameter <25% in PS views
- Pressure Half Time < 200 ms
- Holodiastolic flow reversal in Descending aorta
- Neck in the short axis view
 - < 10% of sewing ring is mild
 - 10-20% moderate
 - > 20% severe
 - > 40% rocking motion
Assessment of Prosthetic Aortic Valve Regurgitation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve structure and motion</td>
<td>Usually normal</td>
<td>Abnormal<sup>1</sup></td>
<td>Abnormal<sup>1</sup></td>
</tr>
<tr>
<td>Mechanical or bioprosthetic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structural parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LV size</td>
<td>Normal<sup>2</sup></td>
<td>Normal or mildly dilated<sup>3</sup></td>
<td>Dilated<sup>3</sup></td>
</tr>
<tr>
<td>Doppler parameters (qualitative or semiquantitative)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jet width in central jets (% LVO diameter): color<sup>4</sup></td>
<td>Narrow (<25%)</td>
<td>Intermediate (26%-64%)</td>
<td>Large (>65%)</td>
</tr>
<tr>
<td>Jet density: CW Doppler</td>
<td>Incomplete or faint</td>
<td>Dense</td>
<td>Dense</td>
</tr>
<tr>
<td>Jet deceleration rate (PHT, ms): CW Doppler<sup>5</sup></td>
<td>Low (<500)</td>
<td>Dense</td>
<td>Dense</td>
</tr>
<tr>
<td>LVO flow vs pulmonary flow: PW Doppler</td>
<td>Slightly increased</td>
<td>Variable (200-500)</td>
<td>Greatly increased</td>
</tr>
<tr>
<td>Diastolic flow reversal in the descending aorta: PW Doppler</td>
<td>Absent or brief early diastolic</td>
<td>Intermediate</td>
<td>Prominent, holodiastolic</td>
</tr>
</tbody>
</table>

Doppler parameters (quantitative)

- Regurgitant volume (mL/breath): <30, 30-59, >60
- Regurgitant fraction (%): <30, 30-50, >50

PROSTHETIC VALVE REGURGITATION

- DT
 - DT: 800, 230
 - DT: 300, 90
Assessment of Prosthetic Aortic Valve Regurgitation

NORMAL

Assessment of Prosthetic Aortic Valve Regurgitation

AORTIC REGURGITATION

R Volume = 120 - 70 = 50 mL
R Fraction = 50/120 = 42%
Assessment of Prosthetic Aortic Valve Regurgitation: TEE

- Identifies:
 - Location,
 - Mechanism,
 - AR width to LVOT width,
 - Posterior jets may be identified
- LVOT obscured by accompanied MV prosthesis
- 3D: value? Especially for transcatheter repair, challenging for AV versus MV
Trans-Catheter Valves

Technical Points

• PW at inferior border of stent
• LVOT diameter
 – Use baseline numbers prior to TAVR
 – BE TAVR: inferior border of stent
 – SE TAVR: inferior border of stent/5 mm below leaflets
Echocardiographic Outcomes
Mean Gradient and Aortic Valve Area

- Mean Gradient
- Aortic Valve Area

Mean ± SD

- PARTNER I B (TF)
- PARTNER I A (All)
- PARTNER I A (TF)
- PARTNER II B (TF)
- PARTNER II HR (TF)

All-Cause Mortality Has Decreased Overall

ALL-CAUSE MORTALITY at 30 DAYS
PARTNER I Trial and PARTNER II Trial

- PARTNER I B (TF)
- PARTNER I A (All)
- PARTNER I A (TF)
- PARTNER II B (TF)
- PARTNER II HR (TF)

SAPIEN Valve
SAPIEN XT Valve
SAPIEN 3 Valve
PARAVALVULAR REGURGITATION

Assessment of Paravalvular Regurgitation Following TAVR
A Proposal of Unifying Grading Scheme

Philipppe Pibarot, DVM, PhD,* Rebecca T. Hahn, MD,† Neil J. Weissman, MD,† Mark J. Monaghan, PhD*
Determinants of PVR after TAVR

Patient Characteristics:
Tissue characteristics such as calcium burden and location, annular dimensions, etc.

Assessment Modality:
Echo, angiography, hemodynamics, and cardiac MR

Procedural Factors:
Sizing Algorithm; deployment technique (positioning and post-dilatation)

Valve Design

Impact of Aortic Regurgitation on Mortality: PARTNER Trial

12-19% of patients with ≥ moderate AR
Moderate/Severe PVL at 30 Days
Edwards SAPIEN Valves

PARTNER I and II Trials

P1B (TF) 179
P1A (Overall) 344
P2B (TF) 276
P2B XT (TF) 284
S3HR (Overall) 583
S3i (Overall) 1076

PARTNER I and II Trials

INVASIVE ASSESSMENT

Aortic Regurgitation Index = \[\frac{(DBP - LVEDP) \times 100}{SBP} \]
= \[\frac{(40-20) \times 100}{120} \] = 16.7

Aortic Regurgitation Index = \[\frac{(DBP - LVEDP) \times 100}{SBP} \]
= \[\frac{(50-10) \times 100}{130} \] = 30.8
ECHOCARDIOGRAPHIC ASSESSMENT
ECHOCARDIOGRAPHIC ASSESSMENT

TAVR PVR ASSESSMENT

<table>
<thead>
<tr>
<th>3-Class Grading Scheme</th>
<th>Trace</th>
<th>Mild</th>
<th>Mild to Moderate</th>
<th>Moderate</th>
<th>Moderate to Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color Doppler</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proximal flow convergence visible</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
<td>Present</td>
<td>Present</td>
</tr>
<tr>
<td>Absent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vena contracta width (mm)</td>
<td>Narrow (1-5)</td>
<td>Narrow (5-10)</td>
<td>Intermediate (5-10)</td>
<td>Intermediate (10-20)</td>
<td>Large (>20)</td>
</tr>
<tr>
<td>Vena contracta area (mm²)</td>
<td>Normal (1-5)</td>
<td>Normal (5-10)</td>
<td>Intermediate (5-10)</td>
<td>Intermediate (10-20)</td>
<td>Large (>20)</td>
</tr>
</tbody>
</table>

Color Doppler
- Absent
- Present
- Proximal flow convergence visible
- Absent
- Present
- Vena contracta width
 - Narrow (1-5)
 - Narrow (5-10)
 - Intermediate (5-10)
 - Intermediate (10-20)
 - Large (>20)
- Vena contracta area
 - Normal (1-5)
 - Normal (5-10)
 - Intermediate (5-10)
 - Intermediate (10-20)
 - Large (>20)
ECHOCARDIOGRAPHIC ASSESSMENT

OTHER TAVR ISSUES

• Infective endocarditis 1.1%
 – 62% 60 days-1 year
 – RF: DM, CKD, infections, Performance in cathlab
 – ABX, Surgical survival (38-75%)

• Thrombosis 0.8%
 – RF Cancer, incomplete expansion, overhanging leaflets
 – Anticoagulation

• Structural failure 13 cases
 – 24 months (up to 5 years
 – Valve in valve
Echocardiographic Evaluation of Prosthetic Valve Endocarditis

Endocarditis

- Incidence < 1% and has declined with perioperative antibiotics
- Form in valve ring and extend to and spread to stent, occluder, or leaflet
- Irregular and independently mobile
- Can not adequately differentiate between vegetations, thrombus, pledgets, sutures, etc
Endocarditis

- TEE has better sensitivity and specificity for
 - Vegetations
 - Abscess in the posterior but not anterior location
- Combined TEE and TTE have a NPV of 95%
- If clinical suspicion high and studies negative, repeat studies in 7-10 days

Parasternal Long
Color

TEE Short
TEE Long

Doppler
Pathology

Echocardiographic Evaluation of Prosthetic Valve Thrombosis/Pannus
Thrombus versus Pannus

Thrombus
- Larger
- Soft density similar to myocardium
- More likely to encounter abnormal valve motion
- Short duration of symptom
- Poor anticoagulation
- Size < 0.85 cm2 less likely to embolize
- More with mechanical

Pannus
- Small
- Dense, 30% may not be visualized
- Longer duration
- More common in aortic

Pannus

TEE
11.6 Prosthetic Valve Thrombosis

Suspect Prosthetic Valve Thrombosis

TTE to evaluate hemodynamic severity

CT or fluoroscopy to evaluate valve motion

Left Sided Prosthetic Valve Thrombosis

TEE for thrombosis size

NYHA III-IV symptoms

Emergency Surgery

Mobile or large (>0.8cm²) thrombus

Emergency Surgery

Right Sided Prosthetic Valve Thrombosis

Recent onset (<14d) NYHA II
Small thrombus (<0.8cm²)

Fibrinolytic Rx if persistent valve thrombosis after IV heparin therapy

Class I

Class IIa
Pre Questions (1)

• Regarding Aortic Prosthetic Valves
 – A. A routine echocardiogram is required very two years after AVR
 – B. An elevated gradient with a decreased EOA is always suggestive of valvular stenosis
 – C. Transthoracic echocardiogram alone is always sufficient to diagnose valvular stenosis
 – D. It is more challenging to quantify para-valvular versus valvular aortic regurgitation.

Answer (1)

• D. It is more challenging to quantify para-valvular versus valvular aortic regurgitation.
Pre Questions (2)

• Patients with Prosthesis-Patient Mismatch
 – A. Have abnormal prosthetic valve function
 – B. Progressively worsen with time
 – C. Have a small valve compared to the demands of their body and cardiac output
 – D. Have a benign condition

Answer (2)

C. Have a small valve compared to the demands of their body and cardiac output
Conclusions

- Elevated gradients across prosthetic aortic valves may be due to other factors besides stenosis
- Regurgitation may be physiological or pathological and may be valvular or paravalvular
- Endocarditis, pannus, and thrombosis may be difficult to distinguish based solely on echocardiographic findings
- TAVR has its unique problems