

Type of	Type of Aneurysm : Causes	
Adventitia Media	False saccular aneurysm	Trauma
Adventitia Media	True diffuse and saccular aneurysms	Connective tissue generic disorders Non-inflammatory medial disease Aortitis Atherosclerosis
Adventitia Media	Dissecting aneurysms	Connective tissue disorders: Hypertension, Marfan's

Predicting Death in Patients with Acute Type A Aortic Dissection

- 547 pts; IRAD; Jan 96-Dec 99
- In hospital mortality 32.5%
 - Age \geq 70 years
 - Abrupt onset of Cx pain
 - Hypotension, shock, tamponade
 - Kidney failure
 - Pulse deficit
 - ECG abnormalities

Circulation 2002;105:200-206

	I CSCIII			
	A + B	Type A	Type B	P =
AI on exam	32%	44%	12%	<.001
Pulse deficit	15%	19%	9.2%	.006
CVA	4.7%	6.1%	2.3%	.07
CHF	6.6%	8.8%	3.0%	.02

Aortic Dissection: Choice of **Imaging Technique**

- Fine tradeoff in sensitivity and specificity
- Availability of technique
- Experience and expertise at a given institution
- Degree of urgency
- Stability of the patient

Aortic Dissection: Why Multiple Studies?

 Initial study often done at referral site

Confirmation needed or desired

• If CT first

- Still need cardiac anatomy, valve status etc
- If echocardiography first Still need assessment of abdominal aorta in many instances

Diagnostic value of different imaging modalities in acute aortic syndromes

Lesion	TTE	TEE	СТ	MRI
Ascending aortic dissection	++	+++	+++	+++
Aortic arch dissection	+	+	+++	+++
Descending aortic dissection	+	+++	+++	+++
Size	++	+++	+++	+++
Mural thrombus	+	+++	+++	+++
Intramural hematoma	+	+++	+++	+++
Penetrating aortic ulcer	++	++	+++	+++
Involvement of aortic branches	+2	(+)	+++	+++

²Can be improved when combined by vascular ultrasound (carotid, subclavian, vertebral, celiac, mesenteric, and renal arteries). +++=excellent; ++=moderate; +=poor,(+)=poor and inconstant; CT=computed tomography; MRI=magnetic resonance imaging, TOE=transesophageal echocardiography; TTE=transthoracic echocardiography.

TEE in Aortic Dissection

- Hallmark is visualization of mobile dissection flap
- Motion that is independent of the Aorta
- Visualization on more than one view
- Clear distinction from reverberations

Systolic expansion of the true lumen Diastolic expansion of the false lumen

Advantages of TEE in Aortic Dissection

- Origin and proximal extent of the dissection flap
- Dimension of the aorta
- Severity of Aortic Insufficiency
- Pericardial effusion
- Coronary involvement

Advantages of CT in Aortic Dissection

- CT first time imaging modality
- In 62% of Type A Ad, CT is the first imaging modality
- Diagnostic accuracy near 100% to exclude Ad
- Evaluation of the entire aorta and branches
- Shortest time to diagnosis
- Disadvantage: Need for iodinated contrast and radiation

Information required from imaging in acute aortic dissection

- Visualization of intimal flap
- Extent of the disease (aortic segmentation)
- Identification of the false and true lumens (if present)
- Localization of entry and re-entry tears (if present)
- Identification of severity and mechanism of aortic valve regurgitation
- Involvement of side branches
- Detection of pericardial effusion
- Detection and extent of pleural effusion
- Detection of peri-aortic and mediastinal bleeding

Aortic Dissection: Complications

- Aortic regurgitation
- Pericardial effusion (rupture of the false lumen into the pericardium) Echo best for pericardial effusion; CT for pleural effusion and peri- aortic hematoma
- Coronary artery involvement (invagination of intimal flap into the coronary
- Other branch vessel involvement

IMH: Predictors Can progress to localized or frank dissection or rupture IMH thickness (>10 mm) and maximal aortic diameter (4cm) predict risk for progression Peri-aortic hemorrhage or pleural effusion (microperforations or inflammatory exudate) Penetrating ulcer or ulcer-like projection secondary to localized dissections in the involved segment

Details required from imaging in Penetrating Aortic Ulcer

- Localization of the lesion (length and depth)
- Co-existence of intramural hematoma
- Peri-aortic tissue and bleeding
- Thickness of the residual wall
- CT, MRI and TEE

PAU's: imaging parameters to report

- Lesion location
- Lesion depth of penetration
- Width at entry site
- Axial length of associated intramural hematoma

Penetrating Atherosclerotic Ulcer

- Natural history is unclear
- No defined strategy
- Surgical repair for Pseudoaneurysm Transmural rupture Hemodynamic instability Continued pain Distal embolization Aneurysmal dilatation

Grade	Severity (atheroma thickness)	Description
1	Normal	Intimal thickness <2mm
2	Mild	Mild(focal or diffuse) intimal thickening of 2-3 mm
3	Moderate	Atheroma >3-5mm (no mobile/ulcerated components)
4	Severe	Atheroma >5mm (no mobile/ulcerated components)
5	Complex	Grade 2,3, or 4 atheroma plus mobile or ulcerated components

Partial Tear

Localized media1 flap involving a relatively small section of the aorta

Extravasation of blood between the media and adventitia

Usually can define an entry site into a pseudoaneurysm

Intimal Tear

Intima is lifted off of the media

Free, highly mobile

No color flow disturbance on Doppler

Unclear prognostic importance

Abdominal aortic pulsed-wave Doppler examination in a patient with severe aortic coarctation demonstrates reduced and delayed systolic forward flow and persistent forward flow during diastole (*yellow arrow*). This "diastolic tail" is a pathognomonic sign of a hemodynamically significant coarctation.

Laboratory tests	To detect signs of:
Red blood cell count	Blood loss, bleeding, anaemia
White blood cell count	Infection, inflammation (SIRS)
C-reactive protein	Inflammatory response
ProCalcitonin	Differential diagnosis between SIRS and sepsis
Creatine kinase	Reperfusion injury, rhabdomyolysis
Troponin I or T	Myocardial ischaemia, myocardial infarction
D-dimer	Aortic dissection, pulmonary embolism, thrombosis
Creatinine	Renal failure (existing or developing)
Aspartate transaminase/ alanine aminotransferase	Liver ischaemia, liver disease
Lactate	Bowel ischaemia, metabolic disorder
Glucose	Diabetes mellitus
Blood gases	Metabolic disorder, oxygenation

Laboratory tests	To detect signs of:
Red blood cell count	Blood loss, bleeding, anaemia
White blood cell count	Infection, inflammation (SIRS)
C-reactive protein	Inflammatory response
ProCalcitonin	Differential diagnosis between SIRS and sepsis
Creatine kinase	Reperfusion injury, rhabdomyolysis
Troponin I or T	Myocardial ischaemia, myocardial infarction
D-dimer	Aortic dissection, pulmonary embolism, thrombosis
Creatinine	Renal failure (existing or developing)
Aspartate transaminase/ alanine aminotransferase	Liver ischaemia, liver disease
Lactate	Bowel ischaemia, metabolic disorder
Glucose	Diabetes mellitus
Blood gases	Metabolic disorder, oxygenation

.... . .