ASCeXAM / ReASCE
Practice Board Exam Questions
Tuesday Morning

- Congenital Heart Disease in Adults
- Congenital Heart Disease Cases
- Diastolic Function
- Pericardial Disease

Congenital Heart Disease Cases

Michael D. Pettersen, MD
Case 1
The echocardiographic finding shown is highly associated with which of the following genetic syndromes?

1. Williams syndrome
2. Noonan syndrome
3. Holt-Oram syndrome
4. Down syndrome
5. Turners syndrome
Case 1
The echocardiographic finding shown is highly associated with which of the following genetic syndromes?

1. Williams syndrome
2. Noonan syndrome
3. Holt-Oram syndrome
4. Down syndrome
5. Turners syndrome

Case 2
Case 2 – Question 1
The most common genetic syndrome associated with this heart defect is:

1. Williams syndrome
2. Noonan syndrome
3. Holt-Oram syndrome
4. Down syndrome
5. Turners syndrome
Case 2 – Question 2
After repair of this defect, the most common cause for re-intervention is due to problems with the:

1. Tricuspid valve
2. Mitral valve
3. Aortic valve
4. Aorta
5. Conduction system
Case 2 – Question 3
This (unrepaired) defect in a 4 month old is associated with:

1. Cyanosis
2. Congestive Heart Failure
3. Sudden Death
4. Rhythm abnormalities
5. Sleep disorder

Case 2 – Question 3
This (unrepaired) defect in a 4 month old is associated with:

1. Cyanosis
2. Congestive Heart Failure
3. Sudden Death
4. Rhythm abnormalities
5. Sleep disorder
Case 3
A 1 year old has a known history of VSD and PDA. CW Doppler tracings are shown. Patient’s BP = 88/59 mmHg. Findings are consistent with:

1. Pulmonary hypertension
2. Coarctation of the aorta
3. Right ventricular outflow tract obstruction
4. Severe tricuspid regurgitation
5. Severe pulmonary regurgitation

<table>
<thead>
<tr>
<th>Gradient = 4 mmHg</th>
<th>Gradient = 71 mmHg</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSD</td>
<td>PDA</td>
</tr>
</tbody>
</table>
Case 3

RVOT gradient = 67 mmHg

VSD gradient = 4 mmHg
PDA gradient = 71 mmHg

8/59 mmHg
84 mmHg
17 mmHg
88 mmHg

Case 4
Case 4 – Question 1
What congenital anomaly is shown?

1. Supra-mitral membrane
2. Total anomalous pulm. venous return
3. Interrupted inferior vena cava
4. Left superior vena cava
5. Cor triatriatum

(Option 4 is highlighted)
Case 4 – Question 2
What is the hemodynamic consequence of this anomaly?

1. Left ventricular volume overload
2. Right ventricular volume overload
3. Pulmonary hypertension
4. Left ventricular inflow obstruction
5. No hemodynamic consequence
Case 5 – Question 1

What is the most common congenital heart defect presenting with this long axis view?

1. Transposition of the great arteries
2. Tetralogy of Fallot
3. Double-outlet right ventricle
4. Pulmonary atresia with VSD
5. Truncus arteriosus
Case 5 – Question 1
What is the most common congenital heart defect presenting with this long axis view?

1. Transposition of the great arteries
2. Tetralogy of Fallot
3. Double-outlet right ventricle
4. Pulmonary atresia with VSD
5. Truncus arteriosus

Case 5 – Question 2
What is the most common clinical presentation of patients with tetralogy of Fallot?

1. Heart murmur
2. Stroke
3. Cyanosis
4. Squatting
5. Chest pain
Case 5 – Question 2
What is the most common clinical presentation of patients with tetralogy of Fallot?

1. Heart murmur
2. Stroke
3. Cyanosis
4. Squatting
5. Chest pain

Case 5 – Question 3
In tetralogy of Fallot, what is the source of the murmur?

1. VSD
2. Tricuspid regurgitation
3. ASD
4. Pulmonary stenosis
5. Aortic stenosis
Case 5 – Question 3
In tetralogy of Fallot, what is the source of the murmur?

1. VSD
2. Tricuspid regurgitation
3. ASD
4. Pulmonary stenosis
5. Aortic stenosis

Congenital Heart Disease Cases
Sabrina D. Phillips, MD, FASE
A 23 year old man presents for echocardiogram after systemic hypertension is noted. 2D imaging demonstrates a focal narrowing of the aorta just distal to the subclavian origin. Maximal instantaneous gradient obtained by Doppler interrogation through this area is 18 mmHg. You should report the following:

1. Findings are consistent with mild coarctation
2. Findings are consistent with moderate coarctation
3. Findings are consistent with severe coarctation
4. Cannot assess severity of coarctation
Correct Answer

4. The instantaneous gradient through the coarctation site is not the best marker of severity of coarctation in an adult. Gradients are reduced by the presence of collateral circulation, if present, and are influenced by other obstructions and cardiac output changes. By echocardiogram, a coarctation is likely significant if the abdominal aortic doppler signal is abnormal, with a slow upstroke and diastolic forward flow present.

2. A 30 year old woman is evaluated by echocardiogram. Continuous wave Doppler through her RVOT is shown:
This Doppler tracing is indicative of?

1. Severe pulmonary valve regurgitation
2. Severe pulmonary valve stenosis
3. Right ventricular non-compliance
4. Patent ductus arteriosus

This Doppler tracing is indicative of?

1. Severe pulmonary valve regurgitation
2. Severe pulmonary valve stenosis
3. **Right ventricular non-compliance**
4. Patent ductus arteriosus
Correct Answer

3. During inspiratory cycles with flow into the RV from the right atrium, there is flow out the RVOT.

A 42 year old man presents with this echo finding:
Accurate assessment of which of these parameters is indicated to determine if surgical intervention is warranted?

1. Right ventricular index of myocardial performance
2. Aortic valve regurgitation grade
3. Right ventricular mid-cavity dimension in diastole
4. Right atrial volume

Accurate assessment of which of these parameters is indicated to determine if surgical intervention is warranted?

1. Right ventricular index of myocardial performance
2. **Aortic valve regurgitation grade**
3. Right ventricular mid-cavity dimension in diastole
4. Right atrial volume
2. Aortic cusp prolapse with progressive aortic valve regurgitation may require a small VSD to be close to prevent further valve degeneration. Hemodynamically significant vsds cause LA/LV dilatation, not RV/RA.

35 year old woman presents for echocardiogram for assessment of dyspnea
What is your diagnosis?

1. AV discordance/ VA discordance or congenitally corrected transposition
2. AV concordance/VA discordance or complete transposition
3. Ebstein anomaly
4. LV non-compaction
Correct Answer

1. AV and VA discordance (ccTGA, LTGA)
Conus present in the “LVOT”

Left A-V valve displaced apically
Side-by-side semi-lunar valves

Lesions Associated with ccTGA

- Ventricular Septal Defect (70%)
- Subpulmonary ventricular outflow tract obstruction (40%)
- Tricuspid valve dysplasia/Ebstein malformation (90%)
- Situs inversus
- Dextrocardia
18 year old man presents for evaluation of palpitations

What other abnormality are you most likely to find on this echocardiogram?

1. Ventricular septal defect
2. Sub-aortic stenosis
3. Double chamber RV
4. Atrial septal defect
What other abnormality are you most likely to find on this echocardiogram?

1. Ventricular septal defect
2. Sub-aortic stenosis
3. Double chamber RV
4. Atrial septal defect

Echocardiographic Evaluation of Diastolic Function

Jae K. Oh, MD, FASE
Case 1. Following PW Doppler and color-M mode of mitral inflow are seen in which situation?

1. Delayed LV relaxation
2. Augmented isovolumic flow
3. Double mitral orifice
4. Grade 2 diastolic dysfunction

Case 2. Following 2-D, mitral inflow Doppler, and strain imaging were obtained from 72 year old man with pleural effusion. What is his diastolic function?

1. Grade 1
2. Grade 2
3. Grade 3
4. Indeterminate
Case 3. Which of following mitral inflow patterns indicate the most optimal diastolic function status in 62 year old woman with ischemic CM?

Case 4. E/e’ is proven to be reliable in estimating LV filling pressure in which of following conditions?

1. Hypertrophic CM
2. LBBB
3. Mitral annulus calcification
4. Atrial fibrillation
Case 5 A. Following mitral inflow and medial annulus velocity were obtained in 75 year old woman with exertional dyspnea. She has a history of hypertension. LA volume could not be measured and TR velocity was 2.6 m/sec. What is her diastolic function?

1. Grade 1
2. Grade 2
3. Grade 3
4. Normal

Case 5B. What is the most appropriate next step?

1. Assure there is no cardiac reason for dyspnea
2. Diuretic therapy
3. Beta-blocker
4. Exercise test
Case 5C. What does exercise echo demonstrate?

1. Normal
2. Increased FP due to diastolic dysfunction
3. Increased FP due to CAD
Which of following hepatic vein PW Doppler indicates constrictive pericarditis?

1. [Image]
2. [Image]
3. [Image]
4. [Image]
Severe TR

Pulmonary Hypertension
RV Dysfunction

Increased respiratory effort
67 year old man presented with dyspnea. Examination showed increased JVP, systolic murmur, and mild pitting edema. Echocardiogram was obtained.

67 year old man with AS and dyspnea
What is his diastolic function?

1. Normal diastolic function
2. Grade 2 dysfunction
3. Grade 3 dysfunction
4. Constriction
Q2B
Which is the most likely etiology?

1. SLE
2. Radiation
3. Ochronosis
4. Tuberculosis

Q2C
Which of following strain imaging is expected in this patient
67 yo man with severe aortic stenosis and HF
Came to Valve Clinic for AVR (LFLG Severe AS)

Stroke volume = (1.9)^2 x 0.785 x 21 = 60 cc
AVA = 60 / 76 = 0.79 cm^2

Tissue Doppler and Strain Imaging in Constriction (Annulus Reversus)

Medial e' = 9 cm/s
Lateral e' = 6 cm/s
67 year old man with AS and Constriction
Hepatic Vein Doppler c/w constriction

Radiation Heart Disease

Valvular Heart Disease
Low-Flow, Low-Gradient Severe Aortic Stenosis in the Setting of Constrictive Pericarditis
Clinical Characteristics, Echocardiographic Features, and Outcomes
Michael Y.C. Tsang, MD; Jin-Oh Choi, MD, PhD; Barry A. Borlaug, MD; Kevin L. Greenon, MD; Stephen S. Cho, MSc; Rick A. Nishimura, MD; Jae K. Oh, MD

Which of following conditions is most likely responsible for the echocardiogram shown?

1. Aortic dissection
2. Mesothelioma
3. Gastro-pericardial fistula
4. Bacterial pericarditis
74 year old man with chest pain for several days

- Normal LV
- Small pericardial effusion
- What to do?

Persistent pain and not feeling well
Atrial fibrillation and hypotension

1= Rate control 2= Steroid 3= Pericardiocentesis 4=More imaging
What do you do now?

• 1. Steroid Therapy
• 2. TEE
• 3. CT
• 4. Surgery

Intraoperative TEE
A 47-year-old woman presents with an abnormal chest X-ray. An echocardiogram is ordered. What is the most appropriate next step?

1. Pericardiocentesis
2. Pericardial window
3. Chest CT
4. Observation

A large pericardial cyst
Following 2-D and MV Doppler echocardiograms were obtained from a patient with marked dyspnea. What is your next step?

1. Pericardiocentesis
2. Pericardectomy
3. Thoracentesis
4. NSAID and Colchicine

Contrast Echocardiography

Roberto M. Lang, MD, FASE
This aortic pulsed-wave Doppler examination was performed in a patient with generalized weakness. What is the most likely diagnosis?

1. Ductus Arteriosus
2. Takayasu’s arteritis
3. Severe aortic regurgitation
4. Coarctation of the Aorta

Reduced and delayed systolic forward flow with persistent forward flow during diastole (diastolic tail)
Case Study

42 year old woman with shortness of breath with exertion
What is the most likely diagnosis?

1. Bicuspid aortic valve
2. HOCM
3. Corrected transposition of the great vessels
4. Membranous sub-aortic stenosis
5. Tetralogy of Fallot
42 year old woman with shortness of breath with exertion

What is the most likely diagnosis?

1. Bicuspid aortic valve
2. HOCM
3. Corrected transposition of the great vessels
4. Membranous sub-aortic stenosis
5. Tetralogy of Fallot

Discrete Subaortic Stenosis

• 10% of all childhood types of AS
• Three types
 • Type 1 = Thin discrete fibrous membrane
 • Type 2 = Fibromuscular rings
 • Type 3 = Subvalvular tunnels (6 to 20%)
• Associated defects (10 – 57%)
 • VSD
 • Bicuspid AV, Coarctation of the AO
Identify this structure

1. Foramen Ovale
2. Chiari Network
3. Thebesian Veins
4. Coronary Sinus
5. Anomalous left internal jugular vein

Identify this structure

1. Foramen Ovale
2. Chiari Network
3. Thebesian Veins
4. Coronary Sinus
5. Anomalous left internal jugular vein
Coronary Sinus: Anatomy

- Opens into the lower posterior aspect of RA (near mouth of IVC)
- Small fold of endocardium, the Thebesian valve situated at the CS orifice
- Chiari network may attach to CS orifice

Coronary Sinus: Anatomy

- 2-3 cm long, runs parallel to and just above the AV grove
- Receives blood form the great cardiac vein and other veins draining the posterior and lateral aspects of the heart
Case

54 year old obese Asian male with sudden onset of severe shortness of breath and bounding pulses. A machinery murmur is auscultated at the LSB, which did not radiate to the back or neck.

A TTE and TEE were obtained.

Which is the most likely diagnosis?
1. Patent Ductus Arteriosus
2. Coronary Artery Fistula
3. Ruptured Aortic Sinus Aneurysm
4. Persistent Left Superior Vena Cava
5. Coronary Sinus Fistula
1. Patent Ductus Arteriosus
2. Coronary Artery Fistula
3. Ruptured Aortic Sinus Aneurysm
4. Persistent Left Superior Vena Cava
5. Coronary Sinus Fistula

What portion of the thoracic aorta is not well visualized by TEE?

1. Proximal descending aorta.
2. Proximal ascending aorta.
3. Distal ascending aorta.
5. Distal aortic arch.
What portion of the thoracic aorta is not well visualized by TEE?

1. Proximal descending aorta.
2. Proximal ascending aorta.
3. Distal ascending aorta.
5. Distal aortic arch.

The best view to evaluate the aortic cannulation site is:

1. Mid-esophageal long-axis view.
2. Upper esophageal long-axis view.
4. Epiaortic short-axis view.
5. Mid-esophageal short-axis view.
The best view to evaluate the aortic cannulation site is:

1. Mid-esophageal long-axis view.
2. Upper esophageal long-axis view.
4. Epiaortic short-axis view.
5. Mid-esophageal short-axis view.

A 72 male patients presents with abdominal pain. A TTE is performed. What is the most likely diagnosis?

1. Aortic thrombus
2. Intra-aortic balloon pump
3. Aortic Dissection
4. Aortic reverberation artifact
5. Liver cyst (longitudinal view)
A 72 male patient presents with abdominal pain. A TTE is performed. What is the most likely diagnosis?

1. Aortic thrombus
2. Intra-aortic balloon pump
3. Aortic Dissection
4. Aortic reverberation artifact
5. Liver cyst (longitudinal view)

These TEE images were obtained in a patient who had a myocardial infarction two weeks ago. What is the most likely diagnosis?

1. Aneurysm of the mitral valve
2. Aneurysm of the inter-valvular fibrosa
3. LV pseudoaneurysm
4. Gerbode ventricular septal defect
5. ASD
These TEE images were obtained in a patient who had a myocardial infarction two weeks ago. What is the most likely diagnosis?

1. Aneurysm of the mitral valve
2. Aneurysm of the inter-valvular fibrosa
3. LV pseudoaneurysm
4. Gerbode ventricular septal defect
5. ASD

A 67 year old patient presents to the ER with chest discomfort. The following images were obtained from the supraclavicular notch. What is the most likely diagnosis?

1. Severe aortic regurgitation
2. Patent ductus arteriosus
3. Aortic Dissection
4. Traumatic aortic rupture
A 67 year old patient presents to the ER with chest discomfort. The following images were obtained from the supraclavicular notch. What is the most likely diagnosis?

1. Severe aortic regurgitation
2. Patent ductus arteriosus
3. Aortic Dissection
4. Traumatic aortic rupture

The aortic annulus should be measured in

1. Mid-systole.
2. End-diastole.
3. Isovolumetric relaxation.
4. Isovolumetric contraction
The aortic annulus should be measured in

1. Mid-systole.
2. **End-diastole.**
3. Isovolumetric relaxation.
4. Isovolumetric contraction