Stress Echocardiography

Steven J. Lester MD, FRCP(C), FACC, FASE

DISCLOSURE

<u>Relevant Financial</u> <u>Relationship(s)</u>

None <u>Off Label Usage</u> None

Growth in Services Provided by Cardiologists

Diamond and Forrester Pre-Test Probability of CAD by Age, Sex and Symptoms

Age (years)	Sex	Typical/Definite Angina Pectoris	Atypical/Probable Angina Pectoris	Nonanginal Chest Pain
≤39	Men	Intermediate	Intermediate	Low
	Women	Intermediate	Very low	Very low
40-49	Men	High	Intermediate	Intermediate
	Women	Intermediate	Low	Very low
50-59	Men	High	Intermediate	Intermediate
	Women	Intermediate	Intermediate	Low
≥60	Men	High	Intermediate	Intermediate
	Women	High	Intermediate	Intermediate

Typical (Definite): 1. Substernal chest pain or discomfort; 2. provoked by exertion or emotional stress; 3. relieved by rest and/or nitrogylcerin

Atypical (Probable): Chest pain or discomfort that <u>lacks one</u> of the Characteristics for definite or typical angina.

Nonanginal Chest Pain: Chest pain or discomfort that <u>meets one or none</u> of the Typical angina characteristics.

Abnormal Stress Echo Outcome

Case

- 73 year old male
- No antecedent CV disease history. Asymptomatic
- Reduced functional capacity due to orthopedic limitations
- Hypertension, diabetes
- Pre-operative cardiac risk stratification prior to an orthopedic procedure

Clinical Risk Factors

Ischemic Heart Disease, Cerebral Vascular Disease, Compensated or prior heart failure, Diabetes (requiring insulin), Renal Insufficiency (Scr > 2.0)

Objectives

- **1.** Stress Modalities
- 2. Interpretation
- **3.** Test Characteristics: Diagnosis
- 4. Prognostic Value
- **5.** Safety
- **6.** Other Uses
- 7. Appropriate Use

Stress Echocardiography Modalities

Stress Echocardiography Treadmill

- Most common is multistage Bruce protocol
- Modified Bruce and Naughton protocols are lower intensity exercise protocols used in those with limited exercise capacity
- Cornell protocol provides a more gradual increase in speed and incline compared to the Bruce protocol

Stress Echocardiography Bicycle

- The cycles are calibrated in kiloponds or Watts which can then be converted to metabolic equivalents (METs).
- It may allow image acquisition during exercise... Doppler information.

Treadmill Versus Supine Bicycle

Hemodynamic Effects	Upright	Supine
Duration and Maximum Workload	>	
Heart Rate	>	
End-diastolic Volume		>
Mean Arterial Pressure		>
Wall Stress		>
Myocardial Oxygen Demand		>
Filling Pressures		>

Exercise Stress Echocardiography Indications To Stop

Absolute

- ST elevation ≥ 1 mm in leads without Q waves
- Ventricular tachycardia
- Decrease in systolic blood pressure > 10 mm Hg from baseline with other signs of ischemia
- Moderate to severe angina
- Nervous system symptoms
- Signs of poor perfusion (cyanosis, pallor)
- Technical difficulties with ECG or blood pressure monitoring
- Patient's desire to stop

Relative

- Arrhythmias other than ventricular tachycardia
- ST or QRS changes including horizontal or downsloping ST depression > 2 mm
- Development of bundle branch block or intraventricular conduction delay that cannot be distinguished from ventricular tachycardia
- Increasing chest pain
- Decrease in systolic blood pressure > 10 mm Hg from baseline without other signs of ischemia
- Fatigue, shortness of breath, wheezing, leg cramps, claudication
- Hypertensive response (> 250 mm Hg systolic and/or > 115 mm Hg diastolic)

Stress Echocardiography Pharmacologic Inotropic / Dobutamine

- Dobutamine acts directly on β-1 adrenergic receptors → Increase in HR and Contractility (4x in normal subjects and < 2x in those with DCM)
- As dobutamine dose increases there is a greater β-2 response resulting in peripheral vasodilation which may lead to a drop in BP
- Compared with exercise LV volumes and wall stress increase less with dobutamine.

Stress Echocardiography Pharmacologic <u>Vasodilators</u>

- Dipyridamole, adenosine, regadenoson
- Small decrease in BP and increase in HR
- If obstructive epicardial disease or microcirculatory dysfunction

Heterogeneity of coronary blood flow between areas subtended by stenosis Vs. normal coronary arteries.

Stress Echocardiography Interpretation

Change in LV Ejection Fraction

- Increase EF: Normal (global contractile reserve in patients with no resting dysfunction is defined by > 5% increase in LVEF)
- No change or decrease: Abnormal

Change in LV end-systolic size / volume

- Decrease: Normal (Flow reserve is defined by <u>></u> 20% increase in forward stroke volume)
- No change or increase: Abnormal (**supine bike)

Regional LV Function Evaluation

Wall thickening, Wall motion Score Index

Segmental Wall Motion Scoring

1 = Normal or hyperdynamic: (systolic increase in thickness >50%)

2 = Hypokinetic: delay in the velocity or onset of contraction (<30-40% systolic increase in thickness)

3 = Akinesis or minimal thickening: <10%
4 = Dyskinetic: Systolic outward motion of the segment

Interpretation Of Wall Motion

Rest	Stress	Interpretation
Normokinetic	Normal-hyperkinetic	Normal
Normokinetic	Wall Motion abnormality (segment worsens function)	Ischemic Response
Hypokinetic	Akinetic / Dyskinetic (segment worsens function)	Ischemic Response
Resting Dysfunction	Fixed / No Change in Function	Infarct / Necrotic
Resting Dysfunction	Slow Sustained Improvement	Stunning or Cardiomyopathy
Resting Dysfunction	Biphasic Response	Hibernating
Akinetic	Dyskinetic	Passive / Mechanical
	,	

Cause of Wall Motion Abnormalities

Wall Motion Abnormalities at Rest

- Ischemic heart disease
 -Infarction
 - -Stunned / Hibernating
- Conduction
 - -Pacing
 - -LBBB
- Cardiomyopathy
- Myocarditis
- Right ventricular volume / pressure overload

Cause of Wall Motion Abnormalities

Wall Motion Abnormalities at Rest

- Ischemic heart disease

 Infarction
 Stunned / Hibernating

 Conduction
 - -Pacing
 - -LBBB
- Cardiomyopathy
- Myocarditis
- •Right ventricular volume / pressure overload

Wall Motion Abnormality Conduction

Wall Motion Abnormality Conduction

Cause of Wall Motion Abnormalities

Wall Motion Abwall Motion Abnormalities at Rest during Stress

- Ischemic heart Ischemia with -Infarction obstructive epicardial -Stunned / HibeGAD g
- Conduction -Pacing -LBBB
 -LBBB
 -hypertensive response
 -microvascular disease
- •Myocarditis Cardiomyopathy
- •Right ventricula Rate-related LBBB pressure overlca Pulmonary

Wall Motion Abnormality Diameter Stenosis

< 85% narrow rest ≥ 50% narrowing stress - collaterals - level of exertion/stress - wall thickness

Quantitative Evaluation of Left Ventricular Function Chordal Center Line Analysis (Centroids)

Translation and Rotation

Stress Echocardiography

Risk of adverse event Prognosis

Detection/Exclusion CAD Diagnosis

Normal SECHO Physical or Pharmacologic

Very Low Risk

 < 1% per year risk of MI, cardiac death or late revascularization

Low Risk

 1-3% per year risk of MI, cardiac death or late revascularization

-submaximal stress (men <7 METS, women < 5 METS) -LVEF <40%

Mertz et al. J Am Coll Cardiol 2007;49:227–37 Sicari et al. European Heart Journal (2009) 30, 278–289

Registered Nu	Safety of Stress Echocardiography Supervised by Registered Nurses: Results of a 2-Year Audit of 15,404 Patients Garvan C. Kane, MD, PhD, Mary J. Hepinstall, RN, Glenda M. Kidd, RN,				
	ExEcho n=8592	DSE n= 6755	P value	Total n = 5349	
Overall Complication Rate	8 (0.09%)	47 (0.7%)	<0.001	55 (0.36%)	
Arrhythmia Requiring Rx	4 (0.05%)	39 (0.58%)	<0.001	43 (0.28%)	
SVT / AF	4 (0.05%)	33 (0.49%)	<0.001	37 (0.24%)	
VT / VF	0	6 (0.09%)	<0.005	6 (0.04%)	
Markedly + / Prolonged CP requiring hospitalization	3 (0.03%)	5 (0.07)	0.56	8 (0.05%)	
Symptomatic hypotension requiring hospitalization	1 (0.01%)	3 (0.04%)	0.44	4 (0.03%)	
Transfer to Hospital	5 (0.06%)	21 (0.31%)	0.0005	26 (0.17)	
Cardiac Rupture or Death comparable with previously report physicians.	0 ed studies evaluating	0 the salety of stress ech	 ocarciography supervi	0 Ised by	

Stress Echocardiography Diastolic Stress Test

Diastolic Stress Echocardiography: A Novel Noninvasive Diagnostic Test for Diastolic Dysfunction Using Supine Bicycle Exercise Doppler Echocardiography

Jong-Won Ha, MD, PhD, Jae K. Oh, MD, Patricia A. Pellikka, MD, Steve R. Ommen, MD, Vicky L. Stussy, RN, RDCS, Kent R. Bailey, PhD, James B. Seward, MD, and A. Jamil Tajik, MD, Rochester, Minnesota

Left ventricular filling pressures can be estimated reliably by combining mitral inflow early diastolic velocity (E) and annulus velocity (E'). An increased E/E' ratio reflects elevated filling pressures and may be useful in assessing an abnormal increase in filling pressures for patients with diastolic dysfunc-tion. The purpose of this study was to evaluate the feasibility of supine bicycle exercise Doppler echocardiography for assessing left ventricular diastolic pressure during exercise. Mitral inflow and septal mitral annulus velocities were measured at rest and during supine

in E/E' during exercise (group 1A) and 9 did (group 1B). For group 2, E/E' did not increase during exercise. Despite different responses of E/E', there was no significant difference in changes of mitral inflow indices (E, A, E/A, deceleration time) between groups. Although the percentage of dyspnea as a primary reason for stopping exercise was similar for the groups, exercise duration was significantly shorter for groups 1B (7.2 \pm 2.5 minutes) and 2 (7.1 \pm 3.3 minutes) than in group 1A (10.4 \pm 3.7 minutes, P = .0129). Diastolic stress echocardiography using ble for demon-

sure) with ever-

J Am Soc Echocardiogr 2005;18:63-8 years) referred None had echocardiographic or electrocardiographic evidence of myocardial ischemia with exer cise. Patients were classified according to E/E' ratio at rest: 26 had E/E' ≤ 10 at rest (group 1) and 19 had E/E' > 10 (group 2). For group 1, 17 had no increase

crements) in

st the hemodynamic consequences of exercise-induced increase in diastolic filling pressure can be demonstrated noninvasively with exercise Doppler echocardiography. (J Am Soc Echocardiogr 2005;18:63–8.)

Case

- •55 year old male
- No known CAD
- Hypertension & exertional dyspnea

Stress Echo

Case

- •67 year old male
- No known CAD
- •Diabetes and hypertension
- Complains of dyspnea on exertion (NYHA II)

Important Observations From the Initial Studies

Important Observations From the Initial Studies

- Those with increased filling pressure at baseline will further increase filling pressure with exercise
- Therefore, those who benefit most from diastolic stress testing are those with normal resting LVFP but abnormal relaxation (grade I)

Summary

- Exertional dyspnea portends a poor prognosis (> angina).
- 2. An exercise induced increase in E/e' relates to changes in filling pressure and its finding has adverse prognostic significance.

Summary

3. The post exercise E/e' can be measured minutes into recovery, ideally as soon as the discrete waves are appreciated.

4. The ideal patient is one with exertional dyspnea and baseline grade I diastolic dysfunction.

2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease

A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines

Developed in Collaboration With the American Association for Thoracic Surgery, American Society of Echocardiography, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Anesthesiologists, and Society of Thoracic Surgeons

Class Ila

Exercise testing is reasonable in selected patients with asymptomatic severe VHD to 1) confirm the absence of symptoms, or 2) assess the hemodynamic response to exercise, or

3) determine prognosis.

(Level of Evidence: B)

Lesley H. Curtis, PhD, FAHA
David DeMets, PhD
Robert A. Guyton, MD, FACC§§
Clyde W. Yancy

Frank W. Seitke, MD, FACC, FAHA Win-Kuang Shen, MD, FACC, FAHA William G. Stevenson, MD, FACC, FAHA§§ 7, MD, FACC, FAHA§§

40

Low EF Area Gradient Mismatch

Baseline Doppler hemodynamics

Class IIa AVR is reasonable in symptomatic patients with lowflow/low-gradient severe AS with reduced LVEF (stage D2) with a low-dose dobutamine stress study that shows

an aortic velocity \geq 4.0 m/s (or mean pressure gradient \geq 40 mm Hg) with a valve area \leq 1.0 cm2 at any dobutamine dose

Pseudo Severe AS

True Severe AS (D2) Ila

Conclusion

- **1.** Understand the differences and indications for the various stress modalities.
- 2. Know the walls and their coronary supply.
- 3. Understand the methods and interpretation of wall motion.
- **4.** Viability: stunning versus hibernation.
- **5.** Understand the test characteristics.
- **6.** Emerging uses: Valve Disease and SOB.
- 7. Appropriate use.

