The Role of Echo in Asymptomatic Severe VHD

Philippe Pibarot, DVM, PhD, FACC, FAHA, FESC, FASE
Research Group in Valvular Heart Diseases
Canada Research Chair in Valvular Heart Diseases

Institut Universitaire de Cardiologie et de Pneumologie de Québec / Québec Heart & Lung Institute
Disclosure
Philippe Pibarot

Financial relationship with industry:

- Edwards Lifesciences: Echo CoreLab - SAPIEN 3
- V-Wave: Echo CoreLab
- Cardiac Phoenix: Research Grant for Echo CoreLab
- Ionis Pharmaceuticals

Other financial disclosure:

- Research Grants from Canadian Institutes of Health
- Research and Heart & Stroke Foundation of Quebec
2014 AHA/ACC Valvular Heart Disease (VHD) Guidelines

Concept of Valve Disease Stages

- **At risk for disease**
 - Stage A
 - Follow

- **Progressive disease**
 - Stage B
 - Echo
 - Stress Echo

- **Severe disease (asymptomatic)**
 - Stage C1
 - Stage C2
 - Intervene

- **Severe disease (symptomatic)**
 - Stage D
Case #1 Asymptomatic Patient with Severe AS (C1 Stage)

- 65 y.o. woman with calcific AS
- Asymptomatic
- LVEF: 60%
- AS severity on echo:
 - Severely calcified valve
 - Peak jet velocity: 5.1 m/s (1 Yr ago: 4.8 m/s)
 - Peak/mean gradient: 104/64 mmHg
 - AVA: 0.65 cm² Indexed AVA: 0.35 cm²/m²
Exercise testing can provide valuable information in patients with VHD, especially in those whose symptoms are difficult to assess.

- It can be combined with echocardiography.
- It has a proven track record of safety, even among asymptomatic patients with severe AS.
- Exercise testing has generally been underutilized in patients with VHD and should constitute an important component of the evaluation process.
Exercise Testing to Unmask Symptoms in AS

Case
Normal test:
9 METS
No fall in BP

Das et al Eur Heart J 2005; 26:1309-13
Clinical Dilemma in Asymptomatic Severe AS (C1 Stage)

Early « Prophylactic » AVR? OR Watchful waiting?
Asymptomatic Aortic Stenosis: It Is Not Simple Anymore

Robert O. Bonow

J Am Coll Cardiol 2015;66:2839-41
Early Surgical versus Conservative Strategies in Patients with Asymptomatic Severe AS

291 Patients treated with early AVR (Initial AVR)
1515 Patients treated with watchful waiting (Conservative)

Aortic valve-related death

Log-rank P=0.003

All-cause death

Log-rank P<0.001

Taniguchi et al. JACC 2015
Guidelines on Management of VHD: Indications for AVR in Asymptomatic Severe AS

<table>
<thead>
<tr>
<th>Guidelines</th>
<th>Recommendation for AVR</th>
<th>Class</th>
</tr>
</thead>
</table>
| ESC-EACTS 2012 | Asymptomatic patients if low surgical risk and one or more of the following findings is present:
• Very severe AS (peak aortic velocity >5.5 m/s)
• Severe valve calcification and a rate of peak aortic velocity progression ≥0.3 m/s/year | IIa |
| ACC-AHA 2014 | Asymptomatic patients low surgical risk and:
• Very severe AS (peak aortic velocity ≥5.0 m/s)
• Aortic velocity progression ≥0.3 m/s/year
• Severe AoV Calcification | IIa IIb|

Case:
- Peak aortic velocity: 5.1 m/s
- Progression 0.3 m/s/yr
- Severe AoV Calcification

Vahanian et al. EHJ 2012
Nishimura, Otto et al. JACC 2014
Case #4: Look At the Valve!
Severe Aortic Valve Calcification

Valve Calcification
(≥3/4)

Case #4: Severe AoV Calcification

Rosenhek et al N Engl J Med
2000; 343:611-7
Aortic Valve Calcification by Echo
Quantification of Valvular Calcification by CT

None Mild Moderate Severe

Messika-Zeitoun, JACC, 2004;110:356-362
AoV Calcium Score Predicts Mortality

Clavel et al. JACC 2014
Exercise-stress echocardiography for risk stratification in “true asymptomatic” AS

Maréchaux et al, Eur Heart J 2010
Cardiac Event-free Survival according to Ex-PHT

PHT: 55% at exercise (SPAP>60) vs. 6% at rest
Exercise PHT: 2-fold increase in cardiac events

Guidelines on Management of VHD: Indications for AVR in Asymptomatic Severe AS

<table>
<thead>
<tr>
<th>Guidelines</th>
<th>Recommendation for AVR</th>
<th>Class</th>
</tr>
</thead>
</table>
| ESC-EACTS 2012 | Asymptomatic patients if low surgical risk and one or more of the following findings is present:
 • Increase of mean gradient with exercise by >20 mmHg
 • Markedly elevated BNP levels confirmed by repeated measurements and without other explanations
 • Excessive LV hypertrophy in the absence of hypertension | IIb |

Case:

- Ex. increase in gradient: +39 mmHg

Exercise Gradients

151/103 mmHg
Look at the arteries:
Patients with calcific AS often have concomitant hypertension.

30-80% of patients with calcific AS have hypertension.
Valvulo-Arterial Impedance: A New Parameter to Estimate Total (Valvular + Arterial) LV Hemodynamic Load

\[Z_{va} = \frac{LVSP}{SVi} = \frac{SAP + \Delta P_{Mean}}{SVi} \]

Case #1: \(Z_{va} = 5.1 \)

>3.5: Moderate
>4.5: Severe
Impact of Valvulo-Arterial Impedance on Overall Survival

Follow-up (years)

Survival (%)

544 Pts.
≥ moderate AS
Asymptomatic

Hachicha et al.
JACC 54;
1003-1011; 2009

Adjusted Hazard Ratios:

3.5≤Z_{va}<4.5: 1.7 (95% CI: 1.4-5.6); p=0.01
Z_{va}≥4.5: 2.0 (95% CI: 1.4-6.6); p=0.006
Look at the Left Ventricle:

Beyond the LV ejection fraction
What Our Eyes See Is Not Necessarily What Our Heart Feels

Philippe Pibarot Éric Larose

Laval Hospital Research Center/Quebec Heart Institute, Laval University, Quebec, Que., Canada
Severe Aortic Stenosis

Diastole

Systole

Wall Thickening: 30%
LVEF: 60%

Longitudinal Shortening: 12%

Pibarot & Dumesnil et al., JACC, 2012
One third of asymptomatic patients with severe AS and normal LVEF have reduced longitudinal function: sub-clinical LV dysfunction

GLS measured by speckle tracking

Case: GLS=13%
LV Longitudinal Shortening: A Surrogate Marker of Myocardial Fibrosis

Weidemann et al. Circulation. 120:577-584, 2009
Prognostic Significance of Myocardial Fibrosis Measured by CMR in Patients with Severe AS

Azevedo et al., JACC 2010;56:278-87
Guidelines on Management of VHD: Indications for AVR in Asymptomatic Severe AS

<table>
<thead>
<tr>
<th>Guidelines</th>
<th>Recommendation for AVR</th>
<th>Class</th>
</tr>
</thead>
</table>
| ESC-EACTS 2012 | Asymptomatic patients if low surgical risk and one or more of the following findings is present:
• Increase of mean gradient with exercise by >20 mmHg
• Markedly elevated BNP levels confirmed by repeated measurements and without other explanations
• Excessive LV hypertrophy in the absence of hypertension | IIb |

Case: BNP: 190 pg/ml
Risk of Mortality according to BNP “Activation”: Ratio of Measured BNP / normal value of BNP in Asymptomatic AS

Clavel et al. JACC; 63, 2014
Clinical Dilemna in Asymptomatic Severe AS:

Early « Prophylactic » AVR?
OR
Watchful waiting?
Clinical Dilemma in Asymptomatic Severe AS:

Early « Prophylactic » AVR?

OR

Active Surveillance!

With Multi-Modality Approach:

Anatomic / hemodynamic severity of AS:

- Very severe AS ($V_{\text{max}} > 5$ m/s)
- Ex. Δ gradient ≥ 20 mmHg
- Severe AoV Ca (MDCT)

Total (valvulo+arterial) load

- $Z_{va} > 4.5$

LV structure and function:

- GLS ≤ 16
- Myocardial fibrosis (CMR)
- BNP Ratio > 1
Guidelines on Management of VHD: Indications for Surgery in Asymptomatic Severe MR

<table>
<thead>
<tr>
<th>Guidelines</th>
<th>Recommendation for Mitral Valve Repair</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC-AHA 2014</td>
<td>Asymptomatic chronic primary severe MR with preserved LV function (LVEF > 60% and LVESD < 40 mm) with:</td>
<td>IIa</td>
</tr>
<tr>
<td></td>
<td>• ≥ 95% likelihood of durable repair without MR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Expected operative mortality < 1%</td>
<td></td>
</tr>
<tr>
<td>ACC-AHA 2014</td>
<td>Asymptomatic chronic primary severe MR with preserved LV function with high likelihood of durable repair with:</td>
<td>IIa</td>
</tr>
<tr>
<td></td>
<td>• New Onset of AF or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Resting PHT (SPAP > 50 mmHg)</td>
<td></td>
</tr>
</tbody>
</table>

Nishimura, Otto et al. JACC 2014
Prognostic Value of LV Longitudinal Strain and LA Volume in Asymptomatic MR

Global Longitudinal Strain

- GLS < 20%
- GLS ≥ 20%

LA Volume

- iLA volume < 40 ml/m²
- iLA volume ≥ 40 ml/m²

Magne et al. Heart 2012
Case #1 Asymptomatic Patient with Moderate MR
42 y.o. man, Barlow disease, no risk factor

r = 0.91 cm
ERO = 24 mm²
RV = 43 ml
Exercise Stress Echo

125 watts 9 Mets Exercise: 8 min 49 s Stop for dyspnea

HR= 155, SBP= 175, DBP=125
Exercise

<table>
<thead>
<tr>
<th>State</th>
<th>ERO (mm²)</th>
<th>RV (ml)</th>
<th>SPAP (mmHg)</th>
<th>HR (bpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rest</td>
<td>24</td>
<td>43</td>
<td>35</td>
<td>88</td>
</tr>
<tr>
<td>Low-Exer</td>
<td>30</td>
<td>55</td>
<td>55</td>
<td>115</td>
</tr>
<tr>
<td>Peak-Exer</td>
<td>49</td>
<td>74</td>
<td>76</td>
<td>153</td>
</tr>
</tbody>
</table>
Exercise-induced Changes in MR Severity

32% of patients increased significantly MR severity ($\Delta RV > 15\text{ml}$, $\Delta ERO > 10\text{mm}^2$) during exercise.

Magne J et al. JACC, 20;56:300-9;2010
Impact of Exercise-induced Increase in MR on Symptom-free Survival

Follow-up, months

Symptom-free survival, %

Changes in RV<15ml
81±6%
53±12%
p=0.0015

Changes in RV≥15ml
67±8%
26±11%

Unadjusted HR=1.8, 95%CI: 1.2-2.4

Magne J et al. JACC, 20;56:300-9;2010
Correlations between Exercise-Induced Changes in MR and in SPAP

\[r = 0.64, \quad p < 0.0001 \]

Changes in RV, ml

Changes in SPAP, mmHg

\[r = 0.63, \quad p < 0.0001 \]

Changes in ERO, mm²

Changes in SPAP, mmHg

Stop for dyspnea

Impact of PHT on Symptom-Free Survival

Resting PHT (SPAP ≥ 50mmHg)

- 16% of patients
- 59±7% symptom-free survival

Adjusted HR=2.1, p=NS

Exercise PHT (SPAP ≥ 60mmHg)

- 57% of patients
- 75±7% symptom-free survival

Adjusted HR=3.4, p=0.002

Severe organic MR

EXERCISE ECHO

SUBCLINICAL LV DYSFUNCTION
2D Speckle Tracking at Rest

GLS = -24.3%
2D Speckle Tracking at Exercise

BNP:
17 pg.ml⁻¹
67 pg.ml⁻¹

GLS_{exercise} = -18\%
LV Contractile Reserve in Asymptomatic MR: Liège-Québec Study

LVCR+: ΔLVEF>4%

Absence of LVCR (GLS) associated with 2-fold increase in cardiac events after adjusting for other resting and exercise echo parameters

Magne et al. Eur Heart J 2013
Pre-op predictors of post-op EF<50%

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Cut-off</th>
<th>AUC</th>
<th>Sens</th>
<th>Spec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rest</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA volume</td>
<td>78 ml</td>
<td>0.79</td>
<td>64%</td>
<td>87%</td>
</tr>
<tr>
<td>LV ejection fraction</td>
<td>67%</td>
<td>0.48</td>
<td>92%</td>
<td>29%</td>
</tr>
<tr>
<td>GLS</td>
<td>18.1%</td>
<td>0.69</td>
<td>77%</td>
<td>76%</td>
</tr>
<tr>
<td>Exercise</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LV ejection fraction</td>
<td>70%</td>
<td>0.72</td>
<td>69%</td>
<td>70%</td>
</tr>
<tr>
<td>GLS</td>
<td>18.5%</td>
<td>0.82</td>
<td>85%</td>
<td>76%</td>
</tr>
<tr>
<td>Ex-induced changes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LV ejection fraction</td>
<td>6.6%</td>
<td>0.74</td>
<td>92%</td>
<td>53%</td>
</tr>
<tr>
<td>GLS</td>
<td>1.9%</td>
<td>0.80</td>
<td>92%</td>
<td>74%</td>
</tr>
</tbody>
</table>

Lancellotti, Piérard JASE, 2008
Summary – Role of Echo in Asymptomatic Severe MR (C1)

<table>
<thead>
<tr>
<th>Guidelines</th>
<th>Recommendation for AVR</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC-AHA ESC-EACTS</td>
<td>Asymptomatic severe MR and symptoms on exercise</td>
<td>I</td>
</tr>
<tr>
<td>ESC-EACTS</td>
<td>Pulmonary hypertension on exercise (systolic PA pressure >60 mmHg)</td>
<td>IIb</td>
</tr>
<tr>
<td>Future Perspective</td>
<td>LA Dilation
Impaired resting GLS
Impaired contractile reserve (ΔGLS on exercise)</td>
<td>?</td>
</tr>
</tbody>
</table>
Severe Valve Disease

Asymptomatic (Stage C1) with no IIa indication of intervention

Positive Stress Test

Rest LV GLS <16% <18% (MR)

Exercise PHT Ex. SPAP ≥ 60 mmHg

Valve Replacement / Repair?

*ACC/AHA NOT ESC guidelines

Aortic Regurgitation
Aortic Stenosis
Mitral Regurgitation
Mitral Stenosis

AR
LVEF ≥ 50%
LVESD ≤ 50mm
LVEDD ≤ 65mm

AS
LVEF ≥ 50%
Vmax <5m/s
Mean Gradient <60mmHg
ΔVmax <0.3m/s/yr

MR
LVEF >60%
LVESD <40mm
Sinus Rhythm
SPAP <50mmHg
Successful Repair <95%
Or Mortality ≥1%

MS
Very Severe MVA <1cm² T₁/₂ ≥ 220
Unfavorable morphology,
LA clot, > mild MR
Severe MVA <1.5cm² T₁/₂ ≥ 150
- Sinus rhythm
- AF with unfavorable morphology,
LA clot, > mild MR

Very Severe MV A <1cm² T₁/₂ ≥ 220
Unfavorable morphology,
LA clot, > mild MR
Severe MVA <1.5cm² T₁/₂ ≥ 150
- Sinus rhythm
- AF with unfavorable morphology,
LA clot, > mild MR

*ACC/AHA NOT ESC guidelines