Hypertrophic Cardiomyopathy
Anatomy, Hemodynamics, and Prognosis

James D. Thomas, MD, FACC, FASE
Director, Center for Heart Valve Disease
Bluhm Cardiovascular Institute
Professor of Medicine, Feinberg School of Medicine, Northwestern University
Chicago, Illinois
29 yo Man with Class III DOE
IV/VI Murmur Despite Triple Rx

Severe HCM with SAM

Stage 2 DD

105 mmHg
29 Year Old Man with HCM
100 mmHg Resting LVOT Gradient

Pre-myectomy

Post-myectomy
29 Year Old Man with HCM

What Got Cut Out.....
One Year Later

Class 1-2 Symptoms

No further SAM, LVOT open, no MR

LVOT gradient 9 mmHg post amyl
3D LVOT Area in 11 HOCM Patients Pre- and Post Myectomy

A_{LVOT} significantly increased after myectomy

Qin et al. Am J Cardiol 2004; 94: 964-6
Hypertrophic Cardiomyopathy

• **Subtypes**
 – Apical hypertrophy (Yamaguchi’s cardiomyopathy)
 – Upper septal hypertrophy
 – Displaced/abnormal papillary muscles

• **Phenotypic manifestations**
 – LVOT obstruction (resting or inducible)
 – Mitral regurgitation
 – Ventricular fibrillation
 – Diastolic dysfunction

• **Therapeutic interventions**
 – Negative inotropes
 – RV pacing
 – Defibrillator implantation
 – Surgical myectomy
 – Alcohol septal ablation
 – Papillary muscle realignment
Apical Hypertrophy
Yamaguchi’s Syndrome

Apical > basal hypertrophy
Apical Hypertrophy
Yamaguchi’s Syndrome

Exaggerated coronary flow
Upper Septal Hypertrophy

Systolic anterior motion of the mitral valve (SAM) with LVOT obstruction
18yo Gene+ Man with LVOT Obstruction

Septum 1.1 cm
Anteriorly displaced papillary muscles

LVOT gradient
Rest 6 mmHg
Amyl 115 mmHg
7.9 METs 118 mmHg

Kwon et al. JASE 2009; 22: e5-e6
Abnormal papillary muscle morphology is independently associated with increased left ventricular outflow tract obstruction in hypertrophic cardiomyopathy

Kwon et al. Heart 2008; 94: 1295-1301
Resting LVOT Gradient Mainly Depends on Papillary Muscle Morphology

Kwon et al. Heart 2008; 94: 1295-1301
Hypertrophic Cardiomyopathy

- **Subtypes**
 - Apical hypertrophy (Yamaguchi’s cardiomyopathy)
 - Upper septal hypertrophy
 - Displaced/abnormal papillary muscles

- **Phenotypic manifestations**
 - LVOT obstruction (resting or inducible)
 - Mitral regurgitation
 - Ventricular fibrillation
 - Diastolic dysfunction

- **Therapeutic interventions**
 - Negative inotropes
 - RV pacing
 - Defibrillator implantation
 - Surgical myectomy
 - Papillary muscle realignment
 - Alcohol septal ablation
Hypertrophic Cardiomyopathy

32 yo Woman with Progressive DOE

7 m/sec 196 mmHg
Predictor of LVOT Gradient in HCM

3D Assessment of LVOT Area

y = 115x^{-1.7}

r = 0.92

n=15

J Am Coll Cardiol 2002; 39:308-14
Both Age and LVOT Gradient Predict Progression to CHF (NYHA Class III or IV)

No Progression to NYHA Class III or IV and Death from Heart Failure or Stroke (%)

<table>
<thead>
<tr>
<th>Years after Gradient Measurement</th>
<th>No obstruction, <40 yr of age</th>
<th>Obstruction, <40 yr of age</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>98</td>
</tr>
<tr>
<td>2</td>
<td>88</td>
<td>85</td>
</tr>
<tr>
<td>4</td>
<td>76</td>
<td>72</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>60</td>
</tr>
<tr>
<td>8</td>
<td>52</td>
<td>48</td>
</tr>
<tr>
<td>10</td>
<td>40</td>
<td>36</td>
</tr>
</tbody>
</table>

Overall P<0.001

No. at Risk

No obstruction, <40 yr of age	349 251 206 146 103 80
No obstruction, 40 yr of age	421 306 258 188 128 108
Obstruction, <40 yr of age	106 70 52 37 21 15
Obstruction, 40 yr of age	118 74 51 29 18 10

Maron et al. NEJM 2003; 348;295-303
Hypertrophic Cardiomyopathy

Induction of LVOT Obstruction

- **Vasodilator**
 - *Amyl nitrite, nitroprusside*
- **Exercise**
 - *Most physiologic but challenging to get maximum*
- **Inotropic stimulation**
 - *Isoproterenol, dobutamine*
 - *Easiest stressor in the OR*
- **Post-extrasystolic beat augmentation**
 - *Best in cath lab*
- **To fully exclude inducible obstruction requires both amyl and exercise**
33 yo man with exertional dyspnea and LVOT murmur
Resting SAM present but gradient only 16 mmHg, 21 mmHg post-amyl
33 yo man with exertional dyspnea and LVOT murmur

Developed marked dyspnea at 6 METs of exercise, now with 119 mmHg LVOT gradient

Provocation of Gradient

57 patients

• 18% only with amyl
• 11% only with exercise
• 26% with both
• 46% with neither

Marwick et al. AJC 1995; 75: 805-9
Hypertrophic Cardiomyopathy

- **Subtypes**
 - Apical hypertrophy (Yamaguchi’s cardiomyopathy)
 - Upper septal hypertrophy

- **Phenotypic manifestations**
 - LVOT obstruction (resting or inducible)
 - Mitral regurgitation
 - Ventricular fibrillation
 - Diastolic dysfunction

- **Therapeutic interventions**
 - Negative inotropes (β-blockers, Ca^{++} blockers, disopyrimide)
 - RV pacing
 - Defibrillator implantation
 - Surgical myectomy
 - Alcohol septal ablation
Mitral regurgitation in HCM occurs when SAM pulls the anterior leaflet away from the posterior one.

At rest, mild SAM, 1+ MR

Post exercise, severe SAM, 4+ MR
Hypertrophic Cardiomyopathy

- **Subtypes**
 - Apical hypertrophy (Yamaguchi’s cardiomyopathy)
 - Upper septal hypertrophy

- **Phenotypic manifestations**
 - LVOT obstruction (resting or inducible)
 - Mitral regurgitation
 - Ventricular fibrillation
 - Diastolic dysfunction

- **Therapeutic interventions**
 - Negative inotropes (β-blockers, Ca^{++} blockers, disopyramide)
 - RV pacing
 - Defibrillator implantation
 - Surgical myectomy
 - Alcohol septal ablation
This Can Really Ruin your Day......

Ventricular fibrillation 3 days following alcohol septal ablation
Hypertrophic Cardiomyopathy

Risk Factors for Sudden Death

- Prior history of VT/VF
- Family history of sudden death
- History of syncope
- Septal thickness > 30 mm
- cTnT genotype
Hypertrophic Cardiomyopathy

• **Subtypes**
 – Apical hypertrophy (Yamaguchi’s cardiomyopathy)
 – Upper septal hypertrophy

• **Phenotypic manifestations**
 – LVOT obstruction (resting or inducible)
 – Mitral regurgitation
 – Ventricular fibrillation
 – Diastolic dysfunction

• **Therapeutic interventions**
 – Negative inotropes (β-blockers, Ca^{++} blockers, disopyrimide)
 – RV pacing
 – Defibrillator implantation
 – Surgical myectomy
 – Alcohol septal ablation
Hypertrophic Cardiomyopathy

Septal LV Hypertrophy

- LVOT obstruction
- Mitral regurgitation
- Hyperdynamic systolic function
- Secondary LVH
- Impaired diastolic relaxation
- Stiff ventricle
Hypertrophic Cardiomyopathy

- **Subtypes**
 - Apical hypertrophy (Yamaguchi’s cardiomyopathy)
 - Upper septal hypertrophy
 - Displaced/abnormal papillary muscles

- **Phenotypic manifestations**
 - LVOT obstruction (resting or inducible)
 - Mitral regurgitation
 - Ventricular fibrillation
 - Diastolic dysfunction

- **Therapeutic interventions**
 - Negative inotropes
 - RV pacing
 - Defibrillator implantation
 - Surgical myectomy
 - Papillary muscle realignment
 - Alcohol septal ablation
Severe Mitral and Aortic Regurgitation

Volume Overload Causing LV Dilation

Underwent successful AVR and MV repair

Smooth post-op course but dyspnea after several months, with loud murmur noted........
LVOT Obstruction After AVR/MVr
62 Year-Old Man

Pre-op
LV: 7.3/4.0 cm
Walls: 1.7/1.4 cm

8 months post-op
LV: 4.0/2.6 cm
Walls: 2.8/1.9 cm

Marked reverse remodeling
β-Blocker

β- + Ca^{++} + Norpace

8.5 m/sec = 289 mmHg
(Ohio indoor record...)

43 mmHg
Hypertrophic Cardiomyopathy

- **Subtypes**
 - Apical hypertrophy (Yamaguchi’s cardiomyopathy)
 - Upper septal hypertrophy
 - Displaced/abnormal papillary muscles

- **Phenotypic manifestations**
 - LVOT obstruction (resting or inducible)
 - Mitral regurgitation
 - Ventricular fibrillation
 - Diastolic dysfunction

- **Therapeutic interventions**
 - Negative inotropes
 - RV pacing
 - Defibrillator implantation
 - Surgical myectomy
 - Papillary muscle realignment
 - Alcohol septal ablation
Impact of DDD Pacing on Functional Status

<table>
<thead>
<tr>
<th>NYHA-FC</th>
<th>Baseline</th>
<th>Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>II</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>III</td>
<td>29</td>
<td>6</td>
</tr>
<tr>
<td>IV</td>
<td>15</td>
<td>0</td>
</tr>
</tbody>
</table>

Fananapazir, Circulation 1992; 85: 2149
Impact of RV Pacing on Invasive Parameters of Systolic and Diastolic Function

- 29 patients studied in cath lab
- Millar catheter studies with and without RV pacing
- With pacing, LVOT gradient fell only 73 to 61 mmHg
- Significant slowing in relaxation and rise in LA pressure

Nishimura, JACC 1996; 28: 1226

- 21 patients randomized to RV pacing in cross-over study
- Gradient fell 76 to 55 mmHg with pacing
- No difference in Quality of Life score or exercise capacity
- RV pacing not routinely recommended

Nishimura, JACC 1996; 28: 1226
Hypertrophic Cardiomyopathy

- **Subtypes**
 - Apical hypertrophy (Yamaguchi’s cardiomyopathy)
 - Upper septal hypertrophy
 - Displaced/abnormal papillary muscles

- **Phenotypic manifestations**
 - LVOT obstruction (resting or inducible)
 - Mitral regurgitation
 - Ventricular fibrillation
 - Diastolic dysfunction

- **Therapeutic interventions**
 - Negative inotropes
 - RV pacing
 - Defibrillator implantation
 - Surgical myectomy
 - Papillary muscle realignment
 - Alcohol septal ablation
Defibrillators in HCM

• 128 pts. (69 < 41yo, 69% male) mean followup 3.1yrs
 – 43 post arrest, 85 for syncope, family history, septum>30 mmHg

• 29 pts with 1 or more appropriate discharge
 – 19/43 post-arrest, 10/85 prophylactic implants (5 syncope, 2 with thick septums, 2 with VT on monitor, 1 with family history)

• 25/29 patients were at rest, 4/29 with exercise

• Discharge rate
 – Post-arrest: 11%/year
 – Prophylactic: 5%/year

Maron, NEJM 2000; 342: 365-73
Hypertrophic Cardiomyopathy

• **Subtypes**
 – Apical hypertrophy (Yamaguchi’s cardiomyopathy)
 – Upper septal hypertrophy
 – Displaced/abnormal papillary muscles

• **Phenotypic manifestations**
 – LVOT obstruction (resting or inducible)
 – Mitral regurgitation
 – Ventricular fibrillation
 – Diastolic dysfunction

• **Therapeutic interventions**
 – Negative inotropes
 – RV pacing
 – Defibrillator implantation
 – Surgical myectomy
 – Alcohol septal ablation
 – Papillary muscle realignment
Myectomy for HCM

- Treatment gold standard
- >40 years experience
- Symptom/gradient improvement
 - (immediate, consistent, permanent)
- Valve and CAD managed
- Indicated for Class III-IV patients with resting or inducible gradients > 50 mmHg
- But mortality has been reported as high as 16% in elderly patients
CCF Isolated Myectomy Experience
1994 - 2005

- 325 pts, 50 ±14 years, 53% male
- Mean IVS 23±5 mm, LVOT gradient 68±43 mmHg
- Results:
 - In hospital mortality: 0/325
 - 22/325 required pacers
 - 10 needed HCM-related reoperations
 - Survival at 3.6±2.8 years was 90%, equivalent to general population

Smedira NG et al. ATS 2008; 85: 127-33
Hypertrophic Cardiomyopathy

- **Subtypes**
 - Apical hypertrophy (Yamaguchi’s cardiomyopathy)
 - Upper septal hypertrophy
 - Displaced/abnormal papillary muscles

- **Phenotypic manifestations**
 - LVOT obstruction (resting or inducible)
 - Mitral regurgitation
 - Ventricular fibrillation
 - Diastolic dysfunction

- **Therapeutic interventions**
 - Negative inotropes
 - RV pacing
 - Defibrillator implantation
 - Surgical myectomy
 - Alcohol septal ablation
 - Papillary muscle realignment
Septal Ablation for HCM

- Sigwart reported 3 pts, 1995
- Alcohol injected into 1st septal perforator to create a “localized myocardial infarction”
- Advantages of nonsurgical procedure
 - Faster recovery
 - Less pain
 - Less complications??
 - Quick return to daily lifestyle
Indications and Anatomic Requirements for PTMSA

• **Indications**
 – Class III or IV patients
 – Resting or inducible gradient >50 mmHg

• **Anatomic requirements**
 – Septum >18mm
 – No intrinsic mitral valve disease
 – Relatively normal coronary arteries
 – Septal perforator of sufficient size and proper location
Alcohol Septal Ablation
79 yo Man, FEV1 0.8L, s/p CVA
Alcohol Septal Ablation
79 yo Man, FEV1 0.8L, s/p CVA

18 month f/u
CCF Alcohol Septal Ablation Experience
1994 - 2005

- 55 pts, 63±13 years, 67% female, 8±1 year f/u

Results:
- Mortality: 0@48h, 2@1y, 7@5y, 13@10y, age only predictor
- Max gradient: 104±35 mmHg ⇒ 49±28 mmHg
- Septum: 24±4 mm ⇒ 18±6 mm
- Minnesota Living w/ HF: 63 ⇒ 25

Kwon DH et al. JACCint 2008; 1: 432-8
Myectomy vs Alcohol Septal Ablation

Updated Meta-Analysis

- 8 observational studies, 380 ASA/326 myectomy

Results:
- No difference in short- or long-term mortality
- No difference in functional class or improvement
- Greater risk of pacer with ASA (OR 2.6)
- Residual gradient higher in ASA

Kwon DH et al. JACC 2010; 55: 823-34
Hypertrophic Cardiomyopathy

• **Subtypes**
 – Apical hypertrophy (Yamaguchi’s cardiomyopathy)
 – Upper septal hypertrophy
 – Displaced/abnormal papillary muscles

• **Phenotypic manifestations**
 – LVOT obstruction (resting or inducible)
 – Mitral regurgitation
 – Ventricular fibrillation
 – Diastolic dysfunction

• **Therapeutic interventions**
 – Negative inotropes
 – RV pacing
 – Defibrillator implantation
 – Surgical myectomy
 – Alcohol septal ablation
 – Papillary muscle realignment
Papillary muscle realignment for symptomatic left ventricular outflow tract obstruction

Roosevelt Bryant, III, MD, and Nicholas G. Smedira, MD, Cleveland, Ohio

Pledgetted mattress sutures direct PM away from LVOT

Post-op result, no LVOT obstruction, even with amyl

Kwon et al. JASE 2009; 22: e5-e6

Bryant et al. JTCVS 2008; 135: 223-4
Papillary Muscle Realignment

Initial Results

• **204 consecutive patients**
 – 143 myectomy, 39 myectomy + MV surgery, 22 papillary muscle realignment ± myectomy

• **Results:**
 – No hospital or 30 day deaths
 – No difference in initial or predischarge gradients
 – 21/22 pap muscle realignment pts became asymptomatic (1 MVR for persistent gradient)

Kwon DH et al. JTCVS 2010; 140: 317-24
Thanks!