Commonly Encountered Congenital Heart Disease in Adults

Sabrina Phillips, MD FACC FASE Associate Professor of Medicine Director of Adult Congenital Heart Disease Services University of Oklahoma Health Sciences Center

No Disclosures

A 24 year old woman presents with dyspnea on exertion. On echocardiogram is found to have right heart dilatation with normal estimated RV systolic pressure. You should assess for which shunt lesions?

A. Unroofed coronary sinus
B. Ventricular septal defect
C. Patent ductus arteriosus
D. None of the above
E. Both A and B

A 30 year old man is known to have an unrestrictive membranous ventricular septal defect. On echocardiogram you would expect to find which of the following?

- A. Systolic velocity across the VSD > 4 m/s
- **B.** Pulmonary valve cusp prolapse into the defect
- **C.** Laminar color Doppler flow across the defect
- **D.** Left ventricular dilatation
- E. AV values at the same level no apical displacement of the tricuspid value

Atrial Septal Defect

Second most common congenital defect recognized in adulthood

- Symptoms progressive
- Physical exam findings subtle

Atrial Septal Defects

- > Secundum
- ➤ Primum
- Sinus Venosus
- Unroofed Coronary Sinus

Atrial Septal Defect

Echo Diagnosis and Evaluation Observe the second s Right sided chamber size and function
 Settimation of PA pressure **OTricuspid Regurgitation Other Lesions ORepair Options**

Secundum Atrial Septal Defect

Medicine Cardiovascular Institute

Image Courtesy of Dr. Bill Edwards

Apical 4 Chamber Imaging

Medicine Cardiovascular Institute

Apical 4 Chamber Imaging

Parasternal Short Axis Imaging

Parasternal Short Axis Imaging

Medicine Cardiovascular Institute

Subcostal Imaging

Primum Atrial Septal Defect

Image Courtesy of Dr. Bill Edwards

Apical 4 Chamber Imaging

Apical 4 Chamber Imaging

Medicine Cardiovascular Institute

Valvular Abnormalities Associated with Primum ASD

Cleft Mitral Valve

Double Orifice Mitral Valve

LVOT Elongation, Narrowing, Anomalous Chords

Medicine Cardiovascular Institute

Sinus Venosus Atrial Septal Defect

Medicine Cardiovascular Institute

Image Courtesy of Dr. Bill Edwards

Subcostal Imaging

TEE Imaging

Anomalous Right Pulmonary Vein

Coronary Sinus Atrial Septal Defect

Coronary Sinus Atrial Septal Defect

Partial Anomalous Pulmonary Venous Return/Connection

Variants of Partial Anomalous Pulmonary Venous Connection

- Right pulmonary venous anomalies are most common
- Left pulmonary venous anomalies only comprise 4% of PAPVC
- Scimitar syndrome 3% of PAPVC
- Connections to the CS exceedingly rare
- Bilateral PAPVC occurs, but rare

PAPVC Physiology

- Left to right shunt
- Right chamber volume overload and dilatation
- Single anomalous veins low risk of hemodynamic compromise
- Less than 50% shunt rare to have symptoms in childhood

ECHO Evaluation of PAPVC

- > Type of connection
- Associated anomalies
- Right chamber size
- Right ventricular function
- > Pulmonary artery pressure

Vertical Vein

Right Pulmonary Vein to SVC

Scimitar Syndrome

Suprasternal Notch Coronal View ("Crab")

Patent Ductus Arteriosus Left Heart Enlargement Pulmonary hypertension common if the PDA is large – may not see a shunt on echo (equal pressures)

Ventricular Septal Defects

Ventricular Septal Anatomy

> Membranous

- > Muscular
 - Inlet: Separates ventricular inflow
 - Trabecular
 - Outlet: Separates outflow tracts

Ventricular Septal Defects

Membranous (80%)
 Muscular (trabecular septum)

► Inlet

Outlet

- Infundibular

-Supracristal/Subarterial (5%)

Post-MI

VSD Anatomy

Echo Evaluation of VSDs

- Location
- ➤ Size
- Involvement of other structures
- Left ventricular and left atrial size
- Estimated right ventricular systolic pressure
- Associated anomalies

Location by Echocardiogram

Parasternal Long Axis

Parasternal Short Axis

Apical

Outlet/Infundibular Septal Defect

Supracristal VSD

Don't Get Confused!

Perimembranous Defect

Trabecular (Muscular) Defect

Inlet VSD

VSD Size

- Small (restrictive): Defect size <1/3 aortic root; velocity > 4 m/s
- Moderate: Defect size ½ aortic root; velocity 3 m/s
- Large (non-restrictive): right and left ventricular systolic pressure near equal

VSD Caveats

The VSD jet may contaminate the TR signal
 Patients with high RV pressures may not have much color flow

Pulmonary Hypertension?

TR estimates RV pressure

Contamination from VSD jet

Outflow Obstructions: 1.PS 2.Double chamber RV

$PAP = QP \times PVR$

PAP: Pulmonary artery pressure QP: Pulmonary blood flow PVR: Pulmonary vascular resistance

Indications for Closure

Large VSD (left heart enlargement, QP/QS > 1.5) without irreversible pulmonary vascular disease

- Aortic valve prolapse with progressive regurgitation
- RV outflow tract obstruction
- Recurrent endocarditis

Atrial Septal Defect vs. Ventricular Septal Defect

ASD

- Increased pulmonary blood flow
- Primarily volume load
- Low incidence of pulmonary hypertension in adulthood

VSD

- Increased pulmonary blood flow
- Primarily pressure load
- High incidence of pulmonary hypertension in adulthood

Conclusion

- Solution ASD and PAPVC = Right heart enlargement
- VSD and PDA = Left heart enlargement
- Patients with pulmonary HTN may not have significant shunt visible

A 24 year old woman presents with dyspnea on exertion. On echocardiogram is found to have right heart dilatation with normal estimated RV systolic pressure. You should assess for which shunt lesions?

A. Unroofed coronary sinus
B. Ventricular septal defect
C. Patent ductus arteriosus
D. None of the above
E. Both A and B

A 24 year old woman presents with dyspnea on exertion. On echocardiogram is found to have right heart dilatation with normal estimated RV systolic pressure. You should assess for which shunt lesions?

A. Unroofed coronary sinus
B. Ventricular septal defect
C. Patent ductus arteriosus
D. None of the above
E. Both A and B

A 30 year old man is known to have an unrestrictive membranous ventricular septal defect. On echocardiogram you would expect to find which of the following?

- A. Systolic velocity across the VSD > 4 m/s
- **B.** Pulmonary valve cusp prolapse into the defect
- **C.** Laminar color Doppler flow across the defect
- **D.** Left ventricular dilatation
- E. AV values at the same level no apical displacement of the tricuspid value

A 30 year old man is known to have an unrestrictive membranous ventricular septal defect. On echocardiogram you would expect to find which of the following?

- A. Systolic velocity across the VSD > 4 m/s
- **B.** Pulmonary valve cusp prolapse into the defect
- C. Laminar color Doppler flow across the defect
- **D.** Left ventricular dilatation
- E. AV values at the same level no apical displacement of the tricuspid value

