Echocardiographic Evaluation of Aortic Valve Prosthesis

Amr E Abbas, MD, FACC, FASE, FSCAI, FSVM, RPVI Co-Director, Echocardiography, Director, Interventional Cardiology Research, Beaumont Health System Associate Professor of Medicine, OUWB School of Medicine ASCeXAM/ReASCE 2016 Philadelphia, PA

Pre Questions (1)

- Regarding Aortic Prosthetic Valves
 - A. A routine echocardiogram is required very two years after AVR
 - B. An elevated gradient with a decreased EOA is always suggestive of valvular stenosis
 - C. Transthoracic echocardiogram alone is always sufficient to diagnose valvular stenosis
 - D. It is more challenging to quantify para-valvular
 versus valvular aortic regurgitation.

Pre Questions (2)

- Patients with Prosthesis-Patient Mismatch
 - A. Have abnormal prosthetic valve function
 - B. Progressively worsen with time
 - C. Have a small valve compared to the demands of their body and cardiac output
 - D. Have a benign condition

GUIDELINES AND STANDARDS

Recommendations for Evaluation of Prosthetic Valves With Echocardiography and Doppler Ultrasound

A Report From the American Society of Echocardiography's Guidelines and Standards Committee and the Task Force on Prosthetic Valves, Developed in Conjunction With the American College of Cardiology Cardiovascular Imaging Committee, Cardiac Imaging Committee of the American Heart Association, the European Association of Echocardiography, a registered branch of the European Society of Cardiology, the Japanese Society of Echocardiography and the Canadian Society of Echocardiography, Endorsed by the American College of Cardiology Foundation, American Heart Association, European Association of Echocardiography, a registered branch of the European Society of Cardiology, the Japanese Society of Echocardiography, and Canadian Society of Echocardiography

William A. Zoghbi, MD, FASE, Chair, John B. Chambers, MD,* Jean G. Dumesnil, MD,[†] Elyse Foster, MD,[‡] John S. Gottdiener, MD, FASE, Paul A. Grayburn, MD, Bijoy K. Khandheria, MBBS, FASE,
Robert A. Levine, MD, Gerald Ross Marx, MD, FASE, Fletcher A. Miller, Jr., MD, FASE, Satoshi Nakatani, MD, PhD,[§] Miguel A. Quiñones, MD, Harry Rakowski, MD, FASE, L. Leonardo Rodriguez, MD, Madhav Swaminathan, MD, FASE, Alan D. Waggoner, MHS, RDCS, Neil J. Weissman, MD, FASE,^{||}
and Miguel Zabalgoitia, MD, Houston and Dallas, Texas; London, United Kingdom; Quebec City, Quebec, Canada; San Francisco, California; Baltimore, Maryland; Scottsdale, Arizona; Boston, Massachusetts; Rochester, Minnesota; Suita, Japan; Toronto, Ontario, Canada; Cleveland, Ohio; Durham, North Carolina; St Louis, Missouri; Washington, DC; Springfield, Illinois

Topics of Discussion

- Types and Flow Profiles of Prosthetic Valves
- Echocardiographic Evaluation: Key Points
- Challenges for Evaluation
- Prosthetic Valves Evaluation
 - Elevated gradients
 - Regurgitation
 - Endocarditis

OU WB Thrombosis versus pannus

Types & Flow Profiles of Prosthetic Valves Mechanical Vs. Bioprosthetic Vs. Autografts

Copyright © American Heart Association

Pibarot P, Dumesnil J G Circulation 2009;119:1034-1048

Types & Flow Profiles of Prosthetic Valves Mechanical Vs. Bioprosthetic Flow

Localized Pressure Loss and High Gradient in Central Orifice of Bileaflet Mechanical Valve (?Pressure Recovery)

ECHO EVALUATION Guidelines

- CLASS I
 - Initial TTE after AVR (2-4 weeks or sooner if concern for follow up and transfer)
 - Repeat TTE for AVR if there is a change in clinical symptoms or signs suggesting dysfunction
 - TEE for AVR if there is a change in clinical symptoms or signs suggesting dysfunction
- CLASS II

Annual TTE in bioprosthetic valves after the first 10 years (5 years in prosthetic statement 2008) but not mechanical valves

ECHO EVALUATION: Key Points

- Clinical picture
- Baseline study
- Type and size of valve
- LV chamber
- BP/HR
- Height/weight/BSA
- Exercise echo may be helpful

OC WB

ECHO EVALUATION: Key Points

- Opening and Closing of leaflets or occluders
- Abnormal densities (calcium/mass/vegetation)
- Stability versus rocking motion
- May use Modified versus Simplified Bernoulli

$$-4V_2^2 - 4V_1^2$$
 Vs. $4V_2^2$

Attention to flow states & adequate Doppler signals

Echo Evaluation: Key Points

- Adequate Doppler Signals
 - LVOT obtained away from flow acceleration
 (0.5 to 1 cm below sewing ring)
 - -Multiple planes
 - Off axis view in parasternal view to obtain
 LVOT diameter
 - Eccentric aortic regurgitant jets may require different angles to Doppler

Evaluation of Prosthetic Valves: Challenges

- Large range in what is considered <u>normal</u>
- Mean Gradients produced depend on <u>size and type</u> of valve.
- For any particular patient... it is difficult to differentiate normal from abnormal, hence the need for comparison to <u>older studies</u>
- <u>Shadowing</u> may interfere with assessment of location and amount of regurgitation WB

Bioprosthetic Valve Abnormalities

- Elevated Gradients
- Regurgitation
- Endocarditis
- Thrombosis
- Pannus

3D Echocardiography

Echocardiographic Evaluation of Elevated Prosthetic Valve Gradients

Echocardiographic Approach

Peak prosthetic aortic velocity

CW Doppler Prosthetic AV

Normal < 3 m/sec

Abnormal > 3 m/sec

Doppler Velocity Index

Doppler Velocity Index

Normal

Pulsed Doppler LVO

CW Doppler Prosthetic AV

1.1/2.8 = 0.39 Normal > 0.3 Obstructed

1/5.5 = 0.18 Abnormal < 0.25

Jet Contour

Triangular

Rounded

Acceleration Time

0.15 sec

OU WB

90 msec Normal < 100 msec 150 msec Abnormal > 100 msec

- Acceleration time/ ejection time
- AT/ET > 0.4: Prosthetic valve obstruction

Effective Orifice Area and iEOA

$$A_2 (EOA) = \underline{A_1 \times V_1}$$
$$V_2$$

iEOA = AVA/BSA

Normal > 1.2 cm² Abnormal < 0.8 cm² Abnormal < 0.6 cm²/m²

Cause of Elevated Gradients Across Aortic Prosthesis

- Errors in Measurement
 - Improper LVOT Velocity
 - Taken too far from flow acceleration
 - Improper AV Velocity (Gradient) Assessment
- Increased Flow
- Pressure Recovery
- Prosthesis patient mismatch
- Prosthesis stenosis

NORMAL PROSTHESIS FUNCTION

PROSTHETIC STENOSIS

Obstructed

CW Doppler Prosthetic AV

Pulsed Doppler

LVO

MG = 80 mmHg DVI = 0.18 AT = 180 ms

Doppler Parameters of Prosthetic Aortic Valve Function

	Normal	Suggests Stenosis
Peak Velocity	< 3 m/s	> 4 m/s
Mean Gradient	< 20 mmhg	> 35 mmhg
Doppler Velocity Index	>= 0.3	< 0.25
Effective Orifice area	> 1.2 cm2	< 0.8 cm2
Contour of Jet	Triangular Early Peaking	Rounded Symmetrical contour
Acceleration Time	< 80 ms	> 100 ms

Mechanisms of Prosthetic Valve Dysfunction

CASE PRESENTATIONS

- CASE PRESENTATION (1):
- 81 Y/O with progressive DOE
- PMHx: Rheumatic valve disease, CABG + Mechanical AVR 2003 (19 St Jude Regent Valve)
- TTE: Difficult to visualize mechanical AV

AV VEL=3.2 DI=0.58/3.2=0.18 AT=150msec Jet Contour: Circular

An approach to prosthetic AV stenosis

An approach to prosthetic AV stenosis

Doppler Parameters of Prosthetic Aortic Valve Function

	Normal		Suggests Stenosis		
Peak Velocity	< 3 m/s	3	.2	> 4 m/s	
Mean Gradient	< 20 mmhg	2	24	> 35 mmhg	
Doppler Velocity Index	>= 0.3	0.	18	< 0.25	
Effective Orifice area	> 1.2 cm2			< 0.8 cm2	
Contour of Jet	Triangular Early Peaking		Rounded Symmetrical contour		
Acceleration Time	< 80 ms	150	ms	> 100 ms	

What is your diagnosis?

- A) Normal Prosthetic Valve Function
- B) Prosthesis Patient Mismatch
- C) High Flow State
- D) Prosthetic Valve Stenosis
- E) Errors of Measurement: Improper LVOT Velocity

Additional Studies Needed?

TEE Helpful with high gradients and normal motion by Fluoro

- CASE PRESENTATION (2):
- 67 Y/O F Hx AVR (Bi-Leaflet Mechanical Valve 1998)
- On Coumadin, difficulty maintaining therapeutic INR
- Progressive DOE 6 mos

AV VEL = 3.6 DVI = 1.19 / 3.60 DVI = 0.33

Acceleration Time 0.11 sec

Original LVOT Velocity Taken Too Close to the AV Prosthesis (region of subvalvular acceleration)

HR

DVI = **Velocity** LVO / AV Jet DVI = 0.82 / 3.60 DVI = 0.22

Original LVOT Velocity Taken Too Close to the AV Prosthesis

Surgical Findings

Well seated valve with a large amount of tissue ingrowth beneath the valve resulting in a frozen leaflet

What is your diagnosis?

- A) Patient Prosthesis Mismatch
- B) Normal Prosthetic Valve Function
- C) High Flow State
- D) Prosthetic Valve Stenosis
- E) Improper LVOT Velocity

What is your diagnosis?

- A) Patient Prosthesis Mismatch
- B) Normal Prosthetic Valve Function
- C) High Flow State
- D) Prosthetic Valve Stenosis
- E) Improper LVOT Velocity (Prosthetic valve stenosis)

- CASE PRESENTATION (3):
- 66 Y/O F Hx AVR (St Jude Valve Conduit 2002 for AR)
 Progressive DOE

LVOT VELOCITY = 0.85

AVA VELOCITY = 3.4

- DVI= 0.85/3.4 = 0.25
- AVA VELOCITY = 3.4 m/s

AT= 0.09 sec

Doppler Parameters of Prosthetic Aortic Valve Function

	Normal	Suggests Stenosis
Peak Velocity	< 3 m/s	> 4 m/s
Mean Gradient	< 20 mmhg	> 35 mmhg
Doppler Velocity Index	>= 0.3	< 0.25
Effective Orifice area	> 1.2 cm2	< 0.8 cm2
Contour of Jet	Triangular Early Peaking	Rounded Symmetrical contour
Acceleration Time	< 80 ms	> 100 ms

Doppler Parameters of Prosthetic Aortic Valve Function

	Normal	Normal		Suggests Stenosis	
Peak Velocity	< 3 m/s	3	.4	> 4 m/s	
Mean Gradient	< 20 mmhg	30		> 35 mmhg	
Doppler Velocity Index	>= 0.3	0.25		< 0.25	
Effective Orifice area	> 1.2 cm2		< 0.8 cm2		
Contour of Jet	Triangular Early Peaking		Rounded Symmetrical contour		
Acceleration Time	< 80 ms	90 ms		> 100 ms	

What is your diagnosis?

- A) Prosthesis Patient Mismatch
- B) Normal Prosthetic Valve Function
- C) High Flow State
- D) Prosthetic Valve Stenosis
- E) Improper LVOT Velocity (Prosthetic valve stenosis)

Patient Prosthesis Mismatch

• AVA velocity:4.6

- **DVI**: 1.14/4.6 = 0.25, AVA= 0.4 cm²
 - Acceleration Time: 60 msec

Patient Prosthesis Mismatch

Patient Prosthesis Mismatch

- $\Delta P = Q^2/(K \times EOA^2)$
- Q = Flow, K = Constant
- For gradients to remain low, EOA has to accommodate and be proportionate to flow
- At rest, Q is determined by BSA
- In patients with large BSA and increased flow, a "too small of a valve" with a small EOA will produce a high gradient

Echocardiographic Evaluation of Prosthetic Valve Regurgitation

Types of Regurgitation

- Regurgitation may be
 - Physiological
 - Pathological
- Physiological regurgitation
 - Closing volume (blood displacement by occluder motion)
 - -At the hinges of occluder

Types of Regurgitation

- Pathological
 - Central
 - Mostly with <u>bioprosthetic</u>
 - Technical or infection related
 - Paravalvular
 - Either type, usually the site with mechanical
 - Mild is common after surgery (5-20%) and likely insignificant in the absence of infection
 - Usually after calcium debridement, redo, older patients
 - Hemolytic anemia
 - TAVR

Central Aortic Regurgitation

Central Aortic Regurgitation

Central Aortic Regurgitation

Paravalvular Aortic Regurgitation

Paravalvular Aortic Regurgitation

- Challenging due to
 - Shadowing
 - Eccentric Jet
 - Difficult to quantify paravalvular leak
- Width of vena contracta may be difficult to measure
- Off axis views may be required

- Jet diameter/LVO diameter <25% in PS views
- Pressure Half Time < 200 ms
- Holodiastolic flow reversal in Descending aorta
- Neck in the short axis view
 - < 10% of sewing ring is mild</p>
 - 10-20% moderate
 - > 20% severe
 - > 40% rocking motion OU WB

Parameter	Mild	Moderate	Severe
Valve structure and motion			
Mechanical or bioprosthetic	Usually normal	Abnormal [†]	Abnormal [†]
Structural parameters			
LV size	Normal [‡]	Normal or mildly dilated [‡]	Dilated [‡]
Doppler parameters (qualitative or semiquantitative)			
Jet width in central jets (% LVO diameter): color*	Narrow (≤25%)	Intermediate (26%-64%)	Large (≥65%)
Jet density: CW Doppler	Incomplete or faint	Dense	Dense
Jet deceleration rate (PHT, ms): CW Doppler [§]	Slow (>500)	Variable (200-500)	Steep (<200)
LVO flow vs pulmonary flow: PW Doppler	Slightly increased	Intermediate	Greatly increased
Diastolic flow reversal in the descending aorta: PW	Absent or brief early diastolic	Intermediate	Prominent, holodiastolic
Doppler	-		
Doppler parameters (quantitative)			
Regurgitant volume (mL/beat)	<30	30-59	>60
Regurgitant fraction (%)	<30	30-50	>50

NORMAL

AORTIC REGURGITATION **R Volume = 120-70 = 50 \text{ mL} R Fraction = 50/120 = 42\%**

- Identifies:
 - Location,
 - Mechanism,
 - AR width to LVOT width,
 - Posterior jets may be identified
- LVOT obscured by accompanied MV prosthesis
- 3D: value? Especially for transcatheter repair

3D in Paravalvular Leak Repair

Echocardiographic Evaluation of Prosthetic Valve Endocarditis

Endocarditis

- Incidence < 1% and has declined with perioperative antibiotics
- Form in valve ring and extend to and spread to stent, occluder, or leaflet
- Irregular and independently mobile
- Can not adequately differentiate between vegetations, thrombus, pledgets, sutures, etc

Endocarditis

- TEE has better sensitivity and specificity for
 - Vegetations
 - Abscess in the posterior but not anterior location
- Combined TEE and TTE have a NPV of 95%
- If clinical suspicion high and studies negative, repeat studies in 7-10 days

Parasternal Long

Color

WB

TEE Short

TEE Long

Doppler

Pathology

Echocardiographic Evaluation of Prosthetic Valve Thrombosis/Pannus

Thrombus versus Pannus

Pannus

Thrombus

- Larger
- Soft density similar to • myocardium
- More likely to encounter • abnormal valve motion
- Short duration of symptom
- Poor anticoagulation
- Size < 0.85 cm2 less likely to • embolize

dore with mechanical

- Small Dense, 30% may not be
- visualized
- Longer duration
- More common in aortic

Pannus

TEE

WB

Pre Questions (1)

- Regarding Aortic Prosthetic Valves
 - A. A routine echocardiogram is required very two years after AVR
 - B. An elevated gradient with a decreased EOA is always suggestive of valvular stenosis
 - C. Transthoracic echocardiogram alone is always sufficient to diagnose valvular stenosis
 - D. It is more challenging to quantify para-valvular
 versus valvular aortic regurgitation.

Answer (1)

• D. It is more challenging to quantify para-valvular versus valvular aortic regurgitation.

Pre Questions (2)

- Patients with Prosthesis-Patient Mismatch
 - A. Have abnormal prosthetic valve function
 - B. Progressively worsen with time
 - C. Have a small valve compared to the demands of their body and cardiac output
 - D. Have a benign condition

Answer (2)

C. Have a small valve compared to the demands of their body and cardiac output

Conclusions

- Elevated gradients across prosthetic aortic valves may be due to other factors besides stenosis
- Regurgitation may be physiological or pathological and may be valvular or paravalvular
- Endocarditis, pannus, and thrombosis may be difficult to distinguish based solely on
 Dechocardiographic findings

"Please Let Them do Well on the Boards" Zane Abbas

