Aortic Stenosis Severe by Gradient not Valve Area

Amr E Abbas, MD, FACC, FSCAI, FASE, FSVM Director, Interventional Cardiology Research Co-Director, Echocardiography Beaumont Health Associate Professor of Medicine, OU/WB School of Medicine

DISCLOSURE **Relevant Financial Relationship(s)** None **Off Label Usage** None

Pre Questions (1)

- The Difference between Doppler MIG and catheterization PPG
 - A. Is due to pressure recovery
 - B. Is due to different measurement timing of the LV and aortic pressures
 - C. Occurs only in patients with small aortas
 - D. Is used to calculate aortic valve area

Pre Questions (2)

- Catheter-Doppler Discordance maybe due to
 - **A.** Pressure recovery
 - **B.** Eccentric jet
 - **C.** High flow states
 - **D.** Very severe aortic stenosis

Severe Aortic Stenosis Area Gradient Match			
	Mean Gradient (mmHg)	Valve Area (cm²)	Valve area index (cm²/BSA)
Mild	<25	>1.5	>0.8
Moderate	25-40	1.0-1.5	0.6-0.8
Severe	>40	<1.0	<0.6

Bonow RO, et al. Circulation, 2008

Valve	Valve
Area	Velocity
(cm²)	(cm/sec)
	Valve Area (cm²)

Mild <20 2 - 2.9

Moderate 20-40 3-3.9

>40 <1.0 >4.0

 $iAVA < 0.6 \text{ cm/m}^2$

Severe

Nishimura, et al. Circulation, 2014

Severe A 975 A 975 Steppisis Area Gradient Mismatch

<25

Mild

Moderate

Severe

Mean	Valve	Valve
Gradient	Area	area index
(mmHg)	(cm²)	(cm²/BSA)

>1.5 >0.8

 25-40
 1.0-1.5
 0.6-0.8

 >40
 <1.0</td>
 <0.6</td>

Bonow RO, et al. Circulation, 2008

Several Gradient Mismatch

Mean	Valve	Valve
Gradient	Area	Velocity
(mmHg)	(cm²)	(cm/sec)

 Mild
 <20</th>
 2 - 2.9

 Moderate
 20- 39
 3 - 3.9

 Severe
 >40
 <1.0</th>
 >4.0

Severse Area Gradient Mismatch

	Gradient (mmHg)	Valve Area (cm²)	Valve area index (cm²/BSA)
Mild	<25	>1.5	>0.8
Moderate	25-40	1.0-1.5	0.6-0.8
Severe	>40	<1.0	<0.6

Nishimura, et al., J Am Coll Cardiol 2014

Severse Area Gradient Mismatch

Valve	Valve
Area	Velocity
(cm²)	(cm/sec
	Valve Area (cm²)

20

Mild	<20	2 – 2.9
Moderate	20-39	3 – 3.9
Severe	>40	> 4.0

Nishimura, et al., Circulation 2014

Aortic Stenosis Determining the "True" Severity

Measurement Errors Must be Excluded

Discordance of Area and Gradient Severity

REVIEW ARTICLE

Aortic Valve Stenosis: To the Gradient and Beyond—The Mismatch Between Area and Gradient Severity

AMR E. ABBAS, M.D., F.A.C.C.,¹ LAURA M. FRANEY, M.D.,¹ JAMES GOLDSTEIN, M.D.,¹ and STEVEN LESTER, M.D., F.R.C.P.(C), F.A.S.E.²

From the ¹Department of Cardiology, William Beaumont Hospital, Royal Oak, Michigan; and ²Department of Internal Medicine, Division of Cardiovascular Diseases, Mayo Clinic, Scottsdale, Arizona

The clinical severity of aortic stenosis (AS) is based largely on symptoms. However, AS severity is primarily determined by estimating the aortic valve area (AVA) and pressure gradients (ΔP). Conditions may arise in which there is a mismatch in severity between AVA and ΔP determinations secondary to errors in measurement and/or assumption, alterations of flow, or variations in the magnitude of pressure recovery. The cause of discrepancy between area and gradient determinations must be deciphered so as to best counsel patients on the most ideal treatment strategy. (J Interven Cardiol 2012;00:1–12)

Topics of Discussions

- GOA Vs. EOA
- Doppler Vs. Catheter
- Factors affecting Gradient
- Area/Gradient Mismatch
- Reverse Area Gradient Mismatch

GOA Versus EOA

GOA: Planimetry EOA: Continuity Equation Coefficient of Contraction: EOA/GOA

B

Doppler versus Catheter Area and Gradient Assessment

• Continuity Equation • A1 x V1 = A2 x V2 $A_2 (AV) = \underline{A_1 x V_1}$ V_2 B

B

- Also, $A_2/A_1 = V_1/V_2$
- The ratio of velocities is the inverse of the ratio of areas
- Dimensionless index = $V_1/V_2 < 0.25$

LVOT Diameter = 2 cm LVOT Area = $0.785 \times (2)^2$ LVOT Area = 3.14 cm^2

- LVOT diameter
- Measure in systole
- At Leaflet insertion

B

• Error squared!!

LVOT assumed as a circle = Πr^2 LVOT Area = Π (LVOT radius) ² LVOT Area = 3.14 x (LVOT diameter/2)² LVOT Area = 0.785 x (LVOT diameter)²

- PW: LVOT
- Use proper cursor alignment parallel to blood flow to obtain optimum signal

- CW: AV
- Multiple windows
- Use proper cursor alignment parallel to blood flow to obtain optimum

Area 1 x TVI₁ = Area 2 x TVI₂ .785 ()² x = AVA x AVA = 78.8/98= 0.8cm²

Doppler Aortic Valve Gradient Assessment

- Doppler
 - MIG = $4V_2^2 4V_1^2$
 - MIG = $4V_2^2$
- Use MIG = $4V_2^2 4V_1^2$
 - V_1 > 1.5 m/second
 - $V_2 < 3$ m/second

B

Doppler versus Catheter Gradient Assessment

Catheterization

- Peak to Peak
- Pmean Catheter
- Doppler
 - MIG $(4V_2^2 4V_1^2)$
 - P_{mean Doppler}
- MIG always > PPG

• Pmean Doppler - Pmean Catheter

Pressure Recovery

- LV Pressure: Mean 180 mmHg
- Aortic Pressure: Mean 140 mmHg
- Catheterization Gradient = Mean 40 mmHg
- Doppler Mean Gradient = 50 mmHg
- Pressure Recovery = 10 mmHg

Not Pressure Recovery

- LV Pressure: Peak 200 mmHg
- Aortic Pressure: Peak 150 mmHg
- Cath Peak to Peak: 50 mmHg
- Doppler Velocity: 4.5 m/second
- Doppler Maximum Instantaneous Gradient: Peak: 81
- Doppler-Cath difference: 31 mmHg Inherent technique difference (timing) and not pressure recovery

Pressure Recovery

- Increase in pressure in the aorta distal to the valve and the vena contracta
- Decrease in pressure gradient between LV and aorta
- Increase in EOA distal to the valve and vena contracta
- Catheter measures distal to the vena contracta

- Area: The lower the area, the higher the gradient
- $\Delta P = Q^2/(K \times EOA^2)$

Flow: The lower the flow, the lower the gradient Low Flow: SVI < 35ml/m² High Flow: SVI > 58 ml/m²

Cardiac Output (I/min, assumes HR 75 bpm, SEP 300 ms)

Jet Eccentricity

More eccentricity, more pressure loss, higher gradient, the less pressure recovery
No further increase beyond 30°

Lossy compression - not intended for diagnosis	Lossy compression - not intended for diagnosis	
X7-2t/TEE	X7-2t/TEE	
FR 3Hz 3D Beats 1	M4 M4 FR 2Hz 3D Beats 1	M4 M4 +50.0
3D 4 4MHz 4 4MHz	A 49.3	-50.0
JPEG PAT T: 37.0C TEE T: 41.0C	66 bpm PAT T: 37.0C TEE T: 39.5C	EG 72 bpm

Jet Eccentricity

Increase in velocity by 0.7 m/sec, gradient 23 mmHg, and decrease in EOA 0.2 cm²

Aortic root diameter

- The larger the aortic root, the more the energy loss, the less the pressure recovery, the higher the catheter gradient. This effect plateaus at a diameter of 30 mm (area 7 cm²)
- The smaller the root
 The more pressure
 recovery.
 ELCo = <u>AVA x AAa</u> <u>AAa-AVA</u>

Doppler/Catheter Discordance Small Aortic Root

Doppler/Catheter Concordance
 Eccentric Jet

Severe Aortic Stenosis with Normal Function

Area Gradient Match

Normal Ejection Fraction Normal Cardiac Output Area/Gradient Match AVA<1cm² ΔP_{mean}>40mmHg

Courtesy Heidi Connolly

Aortic Stenosis Area/Gradient Mismatch
Aortic Stenosis Area Gradient Mismatch Low flow (normal or reduced LVEF) Mean Gradient <30-40mmHg AVA <1.0cm²

True, Severe AS Mild-Mod AS Low Flow (pseudo AS)

Low EF Area Gradient Mismatch

Risk Stratify Dobutamine Stress

Dobutamine Stress

Resting Hemodynamics HR, BP, gradient, CO, AVA

Dobutamine 2.5-5.0 mcg/kg/min

Repeat Hemodynamics Increase by 5 mcg/kg/min

Endpoints ↓ BP, VT, HR>120, symptoms Normalize CO, 20 mcg/kg/min

Courtesy Heidi Connolly

62 y/o male
STEMI and subsequent CABG five years ago
Recurrent heart failure x 3 months

Stroke Volume = CSA x TVI = $0.785 ()^2 x$ = $53 cm^3$

Low Flow

$LVSVI = 53 cm^3 / 2.3 m^2 = 23 cm^3 / m^2$ (< $35 ml/m^2$)

$CI = 23 \text{ cm}^3 / \text{ m}^2 \text{ x } 68 \text{ bpm} = 1.6 \text{ L/min/m}^2$

Area_{AV} = $\frac{0.785(2.2 \text{ cm})^2 \text{ x}()}{= 0.9 \text{ cm}^2, \text{ MG 24mmHg}}$

Low EF Area Gradient Mismatch

LVEF 30% (<45%)
LVSVI 23ml/m²
AVA 0.9cm²
Mean Gradient 24mmHg

Dobutamine Stress

LV Stroke Volume Index 26ml/m² – 40ml/m²

Mean AV Gradient 24 – 52mmHg

Valve Area 0.9cm² – 1.0cm²

•75 year old male

- Presents with dyspnea and syncope
- HTN (treated BP 150/75)
- Grade III/VI mid peaking systolic murmur LSB

Echocardiography Normal EF Area Gradient Mismatch

- LVEF
- AV Mean G
- AVA
- AVA index
- LVEDV
- SVi

55% 26mmHg 0.8cm² $0.45 \text{ cm}^2/\text{m}^2$ **88ml** 32 ml/m²

Aortic Stenosis Severity?

Mild
 Moderate

Severe
 Can't tell

Flow Versus EF

A: EDV = 115, ESV = 45, SV= 115-45 = 70 ml EF = 70/115 = 60% BSA = 1.79 $SVI = 39 \text{ ml/m}^2$ B: EDV = 85, ESV = 35, SV= 85-35= 50 ml EF = 50/85 = 60%BSA = 1.79SVI = 28 ml/m^2

Paradoxical LFLG Severe AS Global Left Alea trigulant Alter land

Global Left Ventricular Afterload

Moderate AS and low compliance = Severe AS and normal compliance

*P value adjusted for age & gender

**P value adjusted for age, gender, valvulo-arterial impedance, & type of Rx

Hachicha et al: Circulation 2007

Aortic Stenosis Reverse Area/Gradient Mismatch

Reverse Area/Gradient Mismatch AVA>1cm² ΔP_{mean}>40mmHg

Courtesy Heidi Connolly

Causes of Reverse A/G Mismatch • Errors of Measurement

- High Flow
- Pressure recovery
- Eccentric Jet
- Para-valvular Obstruction
- Prosthetic-Specific

Mechanical Valve Central Orifice Pressure Drop Patient-prosthesis mismatch

Errors of Measurements Eccentric Mitral

Mitral Regurgitant Jet Versus Aortic Stenosis Jet

Mitral regurgitation occupies IVC and IVR

Errors of Measurements LVOT Measurement

B

- Measure in systole
- At leaflet insertion
- Error squared!!
- Echo underestimates LVOT by 17%

High Flow

- Aortic regurgitation
- Hyperdynamic states (dialysis, anemia)

B

Dimensionless Index

Pressure Recovery/High Flow

Doppler Pmean = 34 mmHg $GOA 1.3 \text{ cm}^2$ $EOA = 0.6 \text{ cm}^2$ Catheterization Pmean = 18 mmHg Ao Diam 2.2 cm AV Vmax 3.70 m 1.5 cm LVPWd AV Vmean 278 m $EOA = 1 \text{ cm}^2$ LVIDd 3.7 cm maxPG 54.75 mmHc EDV(Teich) 56 ml neanPG 34.27 mmH 1.5 cm AV Env.Ti 392 m 153 BPA HR APR = 34 - 18 = 16mmHg RPR= 16/34= 47%

Energy Loss Index

 Energy loss Co-efficient
 ELCo = <u>AVA x AAa</u> AAa-AVA

- AVA = aortic valve area, AAa = aortic area
- Energy loss index: ELCo/BSA
- ELI < 0.52-0.76 cm² has poor outcomes and severe AS
- More significant with increase flow and moderate aortic stenosis

Pressure Recovery/High Flow

 $EOA = 0.6 \text{ cm}^2$ AAd = 2.2 cm $AAa = 3.8 \text{ cm}^2$ EICo =3.8x0.6/3.8-0.6 $EICo = 0.72 \text{ cm}^2$

ELI = 0.72/BSA

GOA 1.3 cm² 4 Ao Diam 2.2 cm AV Vmax 3.70 m/s 3 LVPWd 1.5 cm AV Vmean 2.78 m/ LVIDd 3.7 cm AV maxPG 54.75 mmHg EDV(Teich) 56 ml AV meanPG 34.27 mmHa 1.5 cm IVSd 109.1 cm AV VTI AV Env.Ti 392 ms 153 BPN HR

Eccentric Jet

Case:
29 y/o male
Carries a diagnosis of Asymptomatic severe AS
Quit Law School

Eccentric Jet

Eccentric Jet: Echo

Eccentric Jet: MRI

Aortic Stenosis Reverse Area Gradient Mismatch Elevated Gradient/GOA ok Mean Gradient >40mmHg AVA >1.0cm² **Bicuspid Aortic Valves**

Para-valvular Obstruction

- Sub-Aortic membrane
- Hypertrophic Obstructive Cardiomyopathy
- Supravalvular Obstruction
- Mitral valve Prosthesis

Sub-Aortic Membrane

Lossy compression - not intended for diagnosis

Sub-Aortic Membrane

May Cause aortic regurgitation

Treatment: Surgery No symptoms: Catheter LVOT-A peak/Doppler Mean = 50 mmHg Symptoms: Catheter LVOT-A peak/Doppler Mean = 30-50 mmHg Adults may use Doppler Peak > 50 mmHg

Resection/Konno procedure

B

Progressive Disease Other congenital anomalies in 50% VSD/PDA/Coarctation Shone's Complex Bicuspid AV Ieftsided-SVC Types: Membrane, fibromuscular ridge,

Diffuse tunnel narrowing, mitral tissue

Hypertrophic Obstructive Cardiomyopathy

Alcohol Septal Ablation or Surgery High Risk features ICD

Supra-Aortic Obstruction

Types: Hour glass, Membrane, Diffuse narrowing Surgery

Obstruction by Mitral Valve Prosthesis

Localized Pressure Loss and High Gradient in Central Orifice of Bileaflet Mechanical Valve

Localized Pressure Loss and High Gradient in Central Orifice of Bileaflet Mechanical Valve

Patient Prosthesis Mismatch

Doppler Velocity Index: LVOT /aortic velocity
Acceleration Time: Jet onset to peak

Patient Prosthesis Mismatch

Patient Prosthesis Mismatch

• $\triangle P = Q^2/(K \times EOA^2)$

- To keep gradient low, EOA must accommodate flow
- Under basal conditions, Basal flow depends on BSA, hence small valves = high gradients
- Normal DVI > 0.3, DVI = 28/108 = 0.26, Normal Acceleration time < 100 msec, Acceleration = 60 msec
- $iEOA < 0.85 \text{ cm/m}^2 = PPM$
- iEOA < 0.65 cm/m² = severe PPM

Elevated Prosthesis Gradient

Conclusions Reverse Area Gradient Mismatch

- Errors: Mitral regurgitation jet/LVOT area/angle
- Increased flow: systemic or due to severe aortic regurgitation; Doppler & catheter
- Pressure Recovery: dependent on aortic area
- Para-valve Obstruction: above or below the valve
- Eccentric jets: increased pressure loss and an elevated gradient; Doppler & catheter
- Prosthetic Valve: Localized pressure drop, PPM

Pre Questions (1)

- The Difference between Doppler MIG and catheterization PPG
 - A. Is due to pressure recovery
 - B. Is due to different measurement timing of the LV and aortic pressures
 - C. Occurs only in patients with small aortas
 - D. Is used to calculate aortic valve area

Answer (1)

 B. Is due to different measurement timing of the LV and aortic pressures

Pre Questions (2)

- Catheter-Doppler Discordance maybe due to
 - **A.** Pressure recovery
 - **B.** Eccentric jet
 - **C.** High flow states
 - **D.** Very severe aortic stenosis

Pre Questions (2)

• A. Pressure recovery

Conclusions Reverse Area Gradient Mismatch

- Watch for units to avoid miscalculations
- Realize the difference between MIG and PPG and the mean gradient by both
- EOA is not GOA.

GOA is measured by planimetry EOA by continuity equation and is the area at the vena contracta

THANK YOU