Diastolic Dysfunction Cases

FEBRUARY 15, 2016

Sanjiv J. Shah, MD, FASE

Associate Professor of Medicine Director, Northwestern HFpEF Program Division of Cardiology, Department of Medicine

NORTHWESTERN UNIVERSITY FEINBERG SCHOOL OF MEDICINE

Disclosures

- Grant support:
 - » NIH R01 HL107577, R01 HL127028
 - » Actelion, Novartis
- Consulting:
 - » AstraZeneca, Bayer, Merck, Novartis
- Honoraria:

» ASE, ABIM, Pulmonary Hypertension Assoc.

Case #1: 62-year-old woman with HTN, DM, CKD presents with DOE

PEX: BP 148/52, HR 88, RR 12 JVP 10 cm, bibasilar crackles, irregularly irregular; nl S1 S2 No S3 or S4; soft systolic murmur 1+ LE edema

Echo from 3 years ago reviewed

- Based on TDI of lateral, how would you grade DD?
 - » A. Normal diastolic function for age
 - » B. Grade I DD
 - » C. Grade II DD
 - » D. Abnormal diastolic function (cannot determine grade)
 - » E. None of the above

Echo from 3 years ago reviewed

- Based on TDI of lateral, how would you grade DD?
 - » A. Normal diastolic function for age
 - » B. Grade I DD
 - » C. Grade II DD
 - » D. Abnormal diastolic function (cannot determine grade)
 - » E. None of the above

Good vs. bad TDI

(sample volume placed on lateral atrial wall)

correct

(sample volume placed on lateral mitral annulus)

- 1 year ago: Started to develop DOE
- Stress echo ordered to evaluate for CAD
 » She exercised for 6 minutes (7.2 METs)
 - » Exercise was stopped due to dyspnea
 - » No evidence of ischemia
 - » Diastolic stress echocardiography performed

Case #1: Diastolic stress echo

Case #1: Diastolic stress echo

- Based on the results of diastolic stress echo, what is the most likely cause of this patient's dyspnea?
 - » A. Non-cardiac cause of dyspnea
 - » B. Epicardial coronary artery disease
 - » C. Exercise-induced diastolic dysfunction
 - » D. Exercise-induced arrhythmias
 - » E. None of the above

Case #1: Diastolic stress echo

- Based on the results of diastolic stress echo, what is the most likely cause of this patient's dyspnea?
 - » A. Non-cardiac cause of dyspnea
 - » B. Epicardial coronary artery disease
 - » C. Exercise-induced diastolic dysfunction
 - » D. Exercise-induced arrhythmias
 - » E. None of the above

Diastolic stress echocardiography

- Useful test to determine whether or not patients have exercise-induced DD
- E/e' estimates LV filling pressures at rest and with exercise
- Based on published studies, an E/e' > 13 (using the septal E' velocity) can be used to diagnose exercise-induced DD
- Okay to wait until heart rate < 90 bpm

- 6 months ago:
 - » Worsening dyspnea; echo: concentric LVH

» Mitral inflow:

- What is the best interpretation of the mitral inflow tracing?
 - » A. Severe mitral regurgitation
 - » B. Normal diastolic function for age
 - » C. Mild diastolic dysfunction
 - » D. Moderate or greater diastolic dysfunction
 - » E. Hypertrophic cardiomyopathy

- What is the best interpretation of the mitral inflow tracing?
 - » A. Severe mitral regurgitation
 - » B. Normal diastolic function for age
 - » C. Mild diastolic dysfunction
 - » D. Moderate or greater diastolic dysfunction
 - » E. Hypertrophic cardiomyopathy

The mitral inflow "L" wave

The mitral inflow "L" wave

- L wave = transmitral flow during diastasis
 - » Need very impaired LV relaxation + elevated LA pressure to generate L wave
 - » Very slow LV relaxation causes pressure gradient b/w LA and LV to equilibrate early
 - » In diastasis, LV is still relaxing and LA pressure is high, so transmitral flow occurs, generating L wave

- In clinic, prior echo studies reviewed
- Current meds: diltiazem, warfarin, HCTZ
- Atrial fibrillation:
 - » Diagnosed 3 months ago, Rx'd with ratecontrol, anti-coagulation but pt still SOB
- Further work-up:

» BNP 120 pg/ml, mildly anemic; PFTs: normal

Repeat echo performed

Diastology in setting of atrial fibrillation

- Echo evaluation of diastolic dysfunction in setting of AF is difficult
- Several parameters are available for estimation of LV filling pressures:

» E/E' (septal) > 11

- » Pulmonary vein diastolic (D) wave deceleration time < 150 ms</p>
- » E wave deceleration time < 100 ms

E/e' 11-13-15 rule

- LV filling pressures are elevated when:
 » E/e' septal > 11 in A-fib
 - » E/e' septal > 13 at peak exercise
 - » E/e' septal > 15 at rest

Case #1: Take home points

- Always evaluate quality of TDI tracings when evaluating diastolic function
- Diastolic stress echo: peak stress E/e' (septal) > 13 = exercise-induced DD
- Mitral inflow "L" wave = significant diastolic dysfunction, ^LA pressure
- In atrial fibrillation, you can evaluate for ¹LV filling pressure (E/E' septal > 11)

63-year-old woman with longstanding rheumatoid arthritis presents with dyspnea, LE edema, fatigue

Meds: furosemide, hydroxychloroquine, NSAIDs PRN

PEX: BP 108/62, HR 84, RR 12 JVP 12 cm, clear lungs, RRR nl S1 S2 3/6 holosystolic murmur LSB, 1+ LE edema

Case #2

Normal LVEF = 60%

PASP = 55 mmHg

50 mm/s

E/A ratio = 2:1 LV filling pressures: indeterminate

Pulmonary vein S/D ratio = 0.7

1 of 1

What is the best Rx option?

- A. Sildenafil
- B. Bosentan
- C. Treprostinil
- D. Riociguat
- E. None of the above

What is the best Rx option?

- A. Sildenafil
- B. Bosentan
- C. Treprostinil
- D. Riociguat
- E. None of the above

Invasive hemodynamics

- RA 14 mmHg
- PA 65/24 mmHg (mean 38 mmHg)
- PCWP 22 mmHg
- Transpulmonary gradient = 16 mmHg
- CO 3 L/min
- PVR 5.3 Wood units

Case #2: Hemodynamics

- Dip-and-plateau in RV pressure tracing
- Concordant RV and LV pressure tracings

VACUOLIZATION OF MYOCYTES

MYELIN FIGURES

PLAQUENIL (HYDROXYCHLOROQUINE) CARDIOMYOPATHY

Case #2: Take home points

- e' better than e'/a' ratio for dx of DD
- Small thick LV, RV with enlarged LA, RA + signs of R-sided HF: think restrictive CM
- Hydroxychloroquine can cause a restrictive cardiomyopathy

Case #3: 54-year-old woman with progressive dyspnea on exertion

Phases of Valsalva

- Phase I: BP increases transiently
 » Increased intrathoracic pressure
- Phase II (strain phase): THE KEY PHASE
 - » Gradual decrease in preload of LV
- Phase III: BP decreases further (very brief)
 - » Release of intrathoracic pressure
- Phase IV: Recovery
 - » Preload in LV, aortic pressure, pulse pressure increase

