Cases of Abnormal Prosthetic Valves

Sunil Mankad, MD, FACC, FCCP, FASE Associate Professor of Medicine Mayo Clinic College of Medicine Director, Transesophageal Echcoardiography Associate Director, Cardiology Fellowship Mayo Clinic, Rochester, MN mankad.sunil@mayo.edu @MDMankad

DISCLOSURE

<u>Relevant Financial Relationship(s)</u> None

Off Label Usage None

Huffnagel Artificial Valve

"At the annual meeting of the AHA in California (late 1960's), a patient who had received the Huffnagel artificial valve was being questioned. He was asked the usual question by a member of the audience, i.e. if the loud heart sounds bothered him. He replied, "No." Then after a second thought, he said, "Well occasionally they do. I like to play poker and when I get an unusually good hand, the sounds get louder and faster, and gives me away."

30 yo Woman With Ebstein's Anomaly

- 2009 TVR , MV repair
- 2010 Endocarditis (S. aureus) Redo MVR (St. Jude Epic)
- 2012 Worsening fatigue, dyspnea
 - Physical Exam
 - HR 77 BPM, BP 110/76 mmHg, Afebrile
 - JVP at earlobe sitting upright, prominent V-wave
 - Heart: RRR, S4, faint systolic murmur + diastolic rumble at LLSB. Faint diastolic rumble at the apex
 - Lungs: clear
 - Abdomen: Shifting dullness
 - Extremities: 1+ edema

Mitral Prosthesis

100

100 mm/s

 \Box

Blood cultures negative

What would you recommend?

Redo surgery (MVR)
 Valve-in-valve mitral
 Fibrinolytic therapy
 Warfarin

Bioprosthetic Valve Thrombosis: Diagnosis

- Challenging
- TTE: no set criteria
 Increased gradients
 Thickened cusps, thrombus
 TEE
 Soft echodensity in cusps
 CT

Bioprosthetic Valve Thrombosis Mayo Clinic Experience

European Journal of Cardio-Thoracic Surgery (2014) 1-8

ORIGINAL ARTICLE

Misconceptions, diagnostic challenges and treatment opportunities in bioprosthetic valve thrombosis: lessons from a case series

Sorin V. Pislaru^{a**}, Imad Hussain^{a*}, Patricia A. Pellikka^a, Joseph J. Maleszewski^b,

Richard D. Hanna^a, Hartzell V. Schaff^c and Heidi M. Connolly^a

Division of Cardiovascular Diseases, Mayo Clinic College of Medicine, Rochester, MN, USA ^b Anatomic Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA ^c Cardiovascular Surgery, Mayo Clinic College of Medicine, Rochester, MN, USA

Corresponding author. Division of Cardiovascular Diseases, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.

Received 11 February 2014; received in revised form 23 March 2014; accepted 7 April 2014

Abstract

a

OBJECTIVES: Bioprosthetic valve thrombosis (BPVT) is a rare but potentially life-threatening complication. Current guidelines favour surgery or thrombolysis as initial treatment. We set forth to characterize timing, diagnostic criteria and treatment strategies in BPVT.

METHODS: A free-text search tool was used to identify patients diagnosed with BPVT at Mayo Clinic between 1997 and 2013. We compared patients treated initially with vitamin K antagonists (VKA group; N = 15) versus surgery/thrombolysis (non-VKA group; N = 17).

RESULTS: Peak incidence of BPVT was 13-24 months after implantation in both groups. VKA and surgery/thrombolysis decreased prosthetic mean gradients to a similar extent (VKA group: 13 ± 5 to 6 ± 2 mmHg in mitral position, 9 ± 3 to 5 ± 1 mmHg in tricuspid position and 39 ± 3 to 24 ± 7 mmHg in aortic/pulmonary position; non-VKA group: 16 ± 12 to 5 ± 1 mmHg in mitral, 10 ± 5 to 4 ± 1 mmHg in tricuspid and 57 ± 9 to 18 ± 6 mmHg in aortic position; P = 0.59 for group effect). NYHA class improved in 11 of 15 patients in the VKA group and 10 of 17 patients in the non-VKA group (P = 0.39). There were no deaths, strokes or recognized embolic events; 1 patient in each group experienced gastrointestinal bleeding requiring transfusion. Index transthoracic echocardiogram formally identified BPVT in a minority of patients.

CONCLUSIONS: BPVT may occur late after surgical implantation. VKA therapy resulted in haemodynamic and clinical improvement with minimal risk, and should be considered the first-line therapy in haemodynamically stable patients. Echocardiographic criteria for improving BPVT diagnosis are proposed.

Keywords: Bioprosthetic valves • Prosthetic valve thrombosis • Anticoagulant therapy

Keywords: Bioprosthetic valves • Prosthetic valve thrombosis • Anticoagulant therapy

BPVT diagnosis are proposed. minimal risk, and should be considered the first-line therapy in haemodynamically stable patients. Echocardiographic criteria for improving MAJO CLIXIGACLUSIONS: BPVT may occur late after surgical implantation. VKA therapy resulted in haemodynamic and clinical improvement with

gastrointestinal bleeding requiring transfusion. Index transthoracic echocardiogram formally identified BPVT in a minority of patients. why group (P = 0.59). There were no deaths, strokes or recognized embolic events; 1 patient in each group experienced

Misconceptions in BPVT

• How good was TTE?

- Abnormal findings: all patients
- Possibility of BPVT: 6 of 32
- BPVT not suspected: 8 of 15 undergoing surgery
- TEE
 - Thrombus seen in all mitral / tricuspid
 - Challenging imaging for aortic BPV; thrombus described in 9/12 patients

Misconceptions in BPVT

Peak incidence second year Longest interval: 6.5 years

EJCTS 2014

Misconceptions in BPVT

VKA as effective as surgery / lytics

Our patient: One Month VKA

Diastolic mean gradient: 3 mmHg (HR 66 BPM)

DOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY © 2015 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER INC.

VOL. 66, NO. 21, 2015 ISSN 0735-1097/\$36.00 http://dx.doi.org/10.1016/j.jacc.2015.09.022

Bioprosthetic Valve Thrombosis Versus Structural Failure

Clinical and Echocardiographic Predictors

Cross Mark

Alexander C. Egbe, MD, MPH, * Sorin V. Pislaru, MD, PHD, * Patricia A. Pellikka, MD, * Joseph T. Poterucha, DO, * Hartzell V. Schaff, MD, † Joseph J. Maleszewski, MD, ‡ Heidi M. Connolly, MD*

ABSTRACT

BACKGROUND Bioprosthetic valve thrombosis (BPVT) is considered uncommon; this may be related to the fact that it is often unrecognized. Recent data suggest that BPVT responds to vitamin K antagonists, emphasizing the need for reliable diagnosis.

OBJECTIVES This study sought to determine the diagnostic features of BPVT and to formulate a diagnostic model for BPVT.

model for BPVT.

WAXO CHIVIC OBJECTIVES This study sought to determine the diagnostic features of BPVT and to formulate a diagnostic

BPVT: Mayo Surgical Experience

 All bioprosthetic re-operations 1994-2014

• 46 BPVT <u>(11% of all</u> reoperations)

 92 structural failure (2:1 for age, gender, prosthetic position, and year of implantation)

MAYO CLINIC

Egbe et al. JACC 2015.

Proposed Echo Criteria

 Increased gradient > 50% over baseline, especially within first 5 years post-implant

2. Thickened, <u>non-calcified leaflets</u>

All 3 parameters: 72% sensitivity, 90% specificity for BPVT

Egbe et al. JACC 2015.

Bioprosthetic Valve Thrombosis TAVR: A Bigger Problem?

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Possible Subclinical Leaflet Thrombosis in Bioprosthetic Aortic Valves

R.R. Makkar, G. Fontana, H. Jilaihawi, T. Chakravarty, K.F. Kofoed, O. de Backer, F.M. Asch, C.E. Ruiz, N.T. Olsen, A. Trento, J. Friedman, D. Berman, W. Cheng, M. Kashif, V. Jelnin, C.A. Kliger, H. Guo, A.D. Pichard, N.J. Weissman, S. Kapadia, E. Manasse, D.L. Bhatt, M.B. Leon, and L. Søndergaard

R.R. Makkar, G. Fontana, H. Jilaihawi, T. Chakravarty, K.F. Kofoed, O. de Backer,
F.M. Asch, C.E. Ruiz, N.T. Olsen, A. Trento, J. Friedman, D. Berman, W. Cheng,
M. Kashif, V. Jelnin, C.A. Kliger, H. Guo, A.D. Pichard, N.J. Weissman, S. Kapadia,
E. Manasse, D.L. Bhatt, M.B. Leon, and L. Søndergaard

Makkar et al, NEJM 2015

CT reconstruction – Portico TAV

Corresponding TEE

MAYO CLINIC

Makkar et al, NEJM 2015

BPVT: Take Home Points

- BPVT diagnosis is <u>challenging</u>
- What we know:
 - BPVT may occur late after implantation
 - TTE increased gradient, may not show mechanism
- When to suspect:
 - BPV gradient > 50% over baseline, restricted cusp mobility, thickened leaflets
- TEE/CT when in doubt

Case: 58 Year-Old Woman

- Progressive Dyspnea (NYHA III)
- Rheumatic heart disease
- **2010**
 - Medtronic Mosaic (21mm) AVR
 - MV Repair (27mm Duran ring)
- Obesity
 - BNP not elevated

AV Prosthetic Gradient

T MAYO CLINIC

The gradient across the prosthesis most likely reflects:

A. Patient-prosthesis mismatch

- **B.** Prosthetic obstruction
- **C.** Normal function for this prosthesis
- **D.** Pressure recovery
- E. Cannot tell; need more information

Normal Valve-Specific Parameters

1010 Zoghbi et al

Journal of the American Society of Echocardiography September 2009

Appendix A. Normal Doppler Echocardiographic Values for Prosthetic Aortic Valves*

Valve	Size	Peak gradient (mm Hg)	Mean gradient (mmHg)	Effective orifice area (cm ²)	
Medtronic Mosaic Stented porcine	21 23 25 27 29	23.8 ± 11.0 22.5 ± 10.0	14.2 ± 5.0 13.7 ± 4.8 11.7 ± 5.1 10.4 ± 4.3 11.1 ± 4.3	1.4 ± 0.4 1.5 ± 0.4 1.8 ± 0.5 1.9 ± 0.1 2.1 ± 0.2	

The Differential Diagnosis Elevated Prosthetic Aortic Valve Gradient

Obstruction

- Dysfunction, thrombus, vegetation, pannus, degeneration
- Patient-prosthesis mismatch
 - EOA too small for body size
- High output state
- Pressure Recovery

Interpretation of Elevated Aortic PV Gradients

Doppler parameter	Expected*	Stenosis	PPM	High Output	Pressure Recovery
Gradient (mmHg)	14 ± 5	High	High	High	High

*Prosthesis-specific: Medtronic Mosaic 21mm

Slide adapted from Darryl Burstow, M.D.

Ejection Time (ET) = 331 msec

Acceleration Time (AT) = 88 msec

AT = 88 msec AT / ET = 0.27

These AV systolic time intervals are most consistent with a:

A. Obstructed prosthesisB. Normal prosthesisC. I have no idea

MAYO CLINIC

Ē

Acceleration Time and Ejection Time

Table 2. ROC Analysis: Differentiation of PAV Stenosis From Controls and PPM

			best cuton to Dischminate TAV Stenosis from controls and frim				
Parameter	AUC (95% CI)	Value	Sensitivity (%)	Specificity (%)	Accuracy (%)	PPV (%)	NPV (%)
AT, ms	0.92 (0.83–1.00)	100	86	86	85	66	95
ET, ms	0.73 (0.60–0.86)	275	73	68	74	48	85
AT/ET	0.88 (0.78–0.97)	0.37	96	82	85	64	98

Best Cutoff to Discriminate PAV Stenosis From Controls and PPM

Interpretation of Elevated Aortic PV Gradients

Doppler parameter	Expected*	Stenosis	РРМ	High Output	Pressure Recovery
Gradient (mmHg)	14 ± 5	High	High	High	High
Accel Time (msec)	≤ 100	> 100	≤ 100	≤ 100	≤ 100
AT / ET	≤ 0.37	> 0.37	≤ 0.37	≤ 0.37	≤ 0.37

*Prosthesis-specific: Medtronic Mosaic 21mm

Slide adapted from Darryl Burstow, M.D.

Dimensionless Index

Mean Gradient = 56 mmHg

LVSVI = 54 cc / m² (normal 32-58) m/s]

-0.5

- -1.0

Effective Orifice Area (EOA) = 0.97 cm² EOA Index = 0.57 cm² / m² (BSA 1.7 m²) Dimensionless Index (DI) = 0.28

What is the most likely cause of the elevated gradient in this case?

A. Patient-prosthesis mismatch

- **B.** Prosthetic obstruction
- **C.** High output state
- **D.** Pressure recovery
- **E.** Need more information

Interpretation of Elevated Aortic PV Gradients

Doppler parameter	Expected*	Stenosis	PPM	High Output	Pressure Recovery
Gradient (mmHg)	14 ± 5	High	High	High	High
Accel Time (msec)	≤ 100	> 100	≤ 100	≤ 100	≤ 100
AT / ET	≤ 0.37	> 0.37	≤ 0.37	≤ 0.37	≤ 0.37
Abn Leaflet Motion	No	Yes	No	No	No
EOA (cm ²)	1.4 ± 0.4	Low	Expected	Expected	Varies
EOA Index (cm²/m²)	> 0.85	Low	Low	> 0.85	Varies
DVI	>0.25	≤ 0.25	> 0.25	>0.25	Varies

*Prosthesis-specific: Medtronic Mosaic 21mm

Slide adapted from Darryl Burstow, M.D.

Interpretation of Elevated Aortic PV Gradients

Doppler parameter	Expected*	Stenosis	PPM	High Output	Pressure Recovery
Gradient (mmHg)	14 ± 5	High	High	High	High
Accel Time (msec)	≤ 100	> 100	≤ 100	≤ 100	≤ 100
AT / ET	≤ 0.37	> 0.37	≤ 0.37	≤ 0.37	≤ 0.37
Abn Leaflet Motion	No	Yes	No	No	No
EOA (cm ²)	1.4 ± 0.4	Low	Expected	Expected	Varies
EOA Index (cm²/m²)	> 0.85	Low	Low	> 0.85	Varies
DVI	>0.25	≤ 0.25	> 0.25	>0.25	Varies
∆ in EOA & DVI from baseline	No	Yes	No	No	No

*Prosthesis-specific: Medtronic Mosaic 21mm

Slide adapted from Darryl Burstow, M.D.

Left Ventricle and Aorta

Mean Gradient: 26 mmHg

Mean Gradient = 56 mmHg

Surgical Consultation

-AVR not advised -Medical Rx

Mean Gradient: 26 mmHg

Sinotubular Junction Diameter: 2.1 cm

Discrepancies Between Catheter and Doppler Estimates of Valve Effective Orifice Area Can Be Predicted From the Pressure Recovery Phenomenon Practical Implications With Regard to Quantification of Aortic Stenosis Severity JACC 41(3) 435, 2003

 $AAA \times AVA_{Dop}$

 $AVA_{predict} = \frac{.}{AAA - AVA_{Dop}}$ Routine Adjustment of Doppler
Echocardiographically Derived Aortic Valve Area
Using a Previously Derived Equation to Account for
the Effect of Pressure Recovery

Daniel M. Spevack, MD, Khalid Almuti, MD, Robert Ostfeld, MD, Ricardo Bello, MD, PhD, and Garet M. Gordon, MD, *Bronx, New York*

Energy loss coefficient

Take Home Points

- Use Doppler data to identify the cause for a high prosthetic AV gradient (remember AT and AT/ET)
- Pressure recovery may occasionally lead to significant Doppler overestimate of cath gradient
- Pressure recovery is most likely when the aorta is ≤ 3cm or in bileaflet mechanical prostheses (19 or 21mm)
- Correct for pressure recovery with the Energy Loss Index; this may improve risk stratification in AS

Question

For a Patient with Mechanical Mitral Prosthesis, Which of the Following is *NOT* a sign of Significant Regurgitation?

- **1.** Mitral E velocity 2.3 m/sec
- **2.** Mitral $T_{1/2}$ 150 msec
- **3.** Mitral diastolic mean gradient 10 mmHg
- 4. IVRT 60 msec
- 5. MV prosthesis TVI / LVOT TVI ratio 2.6

Doppler Clues to Severe Mechanical MVR Regurgitation

- Mitral E velocity ≥ 2.0 m/sec
- Increased prosthesis mean gradient
- Normal pressure half-time
- Decreased IVRT
- Dense MR CW velocity profile

Mitral St. Jude Medical Prosthesis CW Doppler E=2.9 m/s t/2=55 msec

E=2.9 m/s

IVRT=55 msec

Severe Periprosthetic Regurgitation

Mechanical MVR

F MAYO CLINIC

Peak Early Diastolic Velocity Rather Than Pressure Half-Time Is the Best Index of Mechanical Prosthetic Mitral Valve Function

Valerian Fernandes, MD, Leopoldo Olmos, MD, Sherif F. Nagueh, MD, Miguel A. Quiñones, MD, and William A. Zoghbi, MD

Reliable screening of mechanical prosthetic mitral valve (PMV) dysfunction by transthoracic echocardiography (TTE) is mandatory because transesophageal echocardiography (TEE) cannot be routinely used. However, acoustic shadowing seriously hampers detection of PMV dysfunction with TTE, particularly regurgitation. To identify TTE indexes that can detect PMV dysfunction (regurgitation or obstruction), 134 patients (age 60 \pm 12 years, 64 men) with PMV who underwent TTE and TEE within 3 ± 5 days were assessed. There were 73 normal and 61 dysfunctional valves (40 regurgitant, 21 obstructive). By multivariate analysis, peak E velocity was the best predictor of a dysfunctional valve. Both peak E velocity (E \geq 1.9 m/s; sensitivity 92%, specificity 78%) and the ratio of velocity-time integrals of flow through the prosthesis to that of the left ventricular outflow $(VTI_{pmv}/VTI_{lyo} \ge 2.2;$ sensitivity 91%, specificity 74%) were successful in detecting PMV dysfunction. Although

pressure half-time (PHT) readily identified PMV obstruction, it did not detect regurgitation. Logistic models including peak E velocity and VTI_{pmv}/VTI_{Ivo} or PHT were equally successful in detecting PMV dysfunction. However, all 3 variables were needed to best distinguish among normal, obstructed, and regurgitant valves. A peak E velocity \geq 1.9 m/s and VTI_{pmv}/VTI_{Ivo} ratio \geq 2.2 predicted valve regurgitation in 83% of valves when PHT was <130 ms, and valve stenosis in 95% when PHT was >130 ms. Importantly, a peak E velocity <1.9 m/s, VTI_{pmy}/VTI_{lvo} ratio <2.2, and a PHT <130 ms had a predictive accuracy for a normal valve of 98%. Thus, TTE Doppler indexes can be used as screening parameters of PMV dysfunction and help select patients for further diagnostic evaluation with TEE. ©2002 by Excerpta Medica, Inc.

(Am J Cardiol 2002;89:704-710)

Mechanical Prosthetic Mitral Valve Dysfunction

	Sens	Spec	PPV	NPV
Doppler index	(%)	(%)	(%)	(%)
E ≥1.9 m/sec	92	78	83	90
$VTI_{PMV}/VTI_{LVO} \ge 2.2$	91	74	80	87
PHT ≥130 msec	38	99	96	57

Fernandes V: Am J Cardiol 89, 3/15/02

Mechanical MVR with [↑]Gradient

• 53 year old female • Hx of CABG, Redo CABG & ST Jude MVR • CHF (LV EF 30%) • NYHA class II Chronic Atrial Fibrillation Coumadin held for colonoscopy No LMWH bridging! Sudden onset severe dyspnea SBP 85 mmHg • Muffled S1 **Diastolic murmur**

No Change in Baseline EKG

1 est ma: CP//00.30

FMAYO CLINIC

Page 1 of 1

Emergent TEE

Mean Gradient 20 mmHg

The mayo clinic

Severe LV Systolic Dysfunction

T MAYO CLINIC

Cardiac Cath

Total Occlusion of LAD, LCx, and RCA

Only One Patent Graft

Significant Collaterals

What would you recommend now?

Immediate CT Surgery
 Thrombolysis
 Heparin and Prayer

Can TEE help decide ?

PRO-TEE Registry

Tong, A. T. et al. J Am Coll Cardiol 2004;43:77-84

PRO-TEE Registry

NYHA CLASS

Tong, A. T. et al. *J Am Coll Cardiol* 2004;43:77-84

Follow-up TEE After Thrombolysis

Follow-up at 1 year: NYHA Class III-IV

Mean Gradient 9 mmHg (INR 3.5-4.5)

T MAYO CLINIC

More Follow-up

- Worsening angina in addition to HF
- Inferolateral and anterior ischemia on vasodilator stress testing
- Placed on Plavix in anticipation of cardiac cath & possible PTCA/Stent
 - Known single patent SVG to LCx
 - All native vessels occluded proximally but LAD and RCA filled via collaterals
 - Not candidate for 3rd CT surgery
 - Not candidate for Heart Transplant

Sudden Onset Improvement in Symptoms TTE Performed

Mean Gradient 4 mmHg

Another Miraculous "CURE"

MAYO CI

Prosthetic Valve Thrombosis: Medical Therapy

Recommendations	COR	LOE
Fibrinolytic therapy is reasonable for patients with a thrombosed left-sided prosthetic heart valve, recent onset (<14 days) of NYHA class I to II symptoms, and a small thrombus	lla	В
Fibrinolytic therapy is reasonable for thrombosed right-sided prosthetic heart	lla	В

Nishimura RA et al. Circulation. 2014 Jun 10;129(23):e521-643

Prosthetic Valve Thrombosis: Intervention

Recommendations	COR	LOE
Emergency surgery is recommended for patients with a thrombosed left-sided prosthetic heart valve with NYHA class III to IV symptoms	I	В
Emergency surgery is reasonable for patients with a thrombosed left-sided prosthetic heart valve with a mobile or large thrombus (>0.8 cm ²)	lla	С

Nishimura RA et al. Circulation. 2014 Jun 10;129(23):e521-643

Evaluation and Management of Suspected Prosthetic Valve Thrombosis

Learn. Advance. Heal.

Thank You! mankad.sunil@mayo.edu @MDMankad

