Aortic Stenosis

Echocardiographic Evaluation of Hemodynamic Severity

Steven J. Lester MD, FACC, FRCP(C), FASE Mayo Clinic, Arizona

DISCLOSURE

Relevant Financial Relationship(s) None Off Label Usage None

VHD in the 21th century A re-emerging public-health problem

- Increasing prevalence
- Mostly degenerative
- Affecting the elderly
- Requiring new approaches

VHD in the 21th century A re-emerging public-health problem

- Increasing prevalence
- Mostly degenerative
- Affecting the elderly
- Requiring new approaches

Leonardo da Vinci - 1513

www.reportajes.org/.../02/leonardo-da-vinci.jpg

Normal Aortic Valve

Normal Valve Area = 3 to 4 cm² N = non-coronary cusp; L = left coronary cusp; R = right coronary cusp Michelena HI, Mankad S, Sarano ME. Atlas of Echocardiography, 2009

Lazarus Riverius 1589-1655

3

Stages of Progression of Valvular Heart Disease

Stage	Definition	Description
А	At risk	Patients with risk factors for the development of VHD

Aortic Stenosis Hemodynamic Severity				
	Aortic V _{max} (m/s)	Mean Gradient (mmHg)	Valve Area (cm²)	Valve Area Index (cm²/m²)
Mild	2.0-2.9	<20	>1.5	>0.8
Moderate	3.0-3.9	20-39	1.1-1.5	0.7-0.8
Severe	<u>≥</u> 4.0	>40	<u>≤</u> 1.0	<u><</u> 0.6
			Nishim	ura, et al, 2014

Aortic Stenosis Hemodynamic Severity				
	Aortic V _{max} (m/s)	Mean Gradient (mmHg)	Valve Area (cm²)	Valve Area Index (cm²/m²)
Mild	2.0-2.9	<20	>1.5	>0.8
Moderate	3.0-3.9	20-39	1.1-1.5	0.7-0.8
Severe	<u>≥</u> 4.0	>40	<u><</u> 1.0	<u><</u> 0.6
			Nishim	ura, et al, 2014

Echocardiographic Evaluation of Aortic Stenosis

Rule #1: CW Doppler from multiple windows

LVOT Diameter

LVOT Diameter

LVOT Diameter

Echocardiographic Evaluation of Aortic Stenosis

Rule #2:

When measuring the LVOT diameter you should see the base of the anterior or right coronary cusp but may not clearly see the posterior cusp.

Echocardiographic Evaluation of Aortic Stenosis

Rule #2a:

When measuring the LVOT diameter this measurement should be made at the level of the annulus at peak systole.

Aortic Stenosis Measure LVOT_{TVI}

Echocardiographic Evaluation of Aortic Stenosis

Rule #3:

When measuring the $LVOT_{TVI}$ the pulsed wave sample volume should be placed in the blue flow.

3D Echocardiography Stroke Volume & Ejection Fraction

Echocardiographic Evaluation of Aortic Stenosis

Rule #4:

Check for concordance between Doppler with 2D &/or 3D calculations of stroke volume and compare to LV size and ejection fraction.

Echocardiographic Evaluation of Aortic Stenosis

Rule #5:

Check for concordance between the calculated valve area and mean gradient or explain discordance.

