

State-of-the-Art ECHOCARDIOGRAPHY: ECHO SOUTHWEST

ANNUA

Echocardiographic Evaluation of Degenerative Mitral Valve Disease

Roberto M. Lang, MD

Conflict of Interests

- Echo-Insight
 - Research Grants
- Tomtec
 - Research Grants
- Philips Medical Imaging
 - Research Grants
 - Speakers bureau
 - Advisory bureau

1953- The Technique is born

ler 2001

2003 Mayo Clinic

An elaborately decorated heraldic Western mitre (Greek: μίτρα, "headband" or "turban"). The tufts along the edges indicate that this mitre is that of an archbishop

Matrix TEE Probe: 2007

Sugeng L, Shernan SK, Salgo IS, Weinert L, Shook D, Raman J, Jeevanandam V, DuPont F, Settlemier S, Savord B, Fox J, Mor-Avi V, Lang RM. *J Am Coll Cardiol* 2008 August 5;52(6):446-449.

Surgeon's View of the MV

Lang RM, Tsang W, Weinert L, Mor-Avi V, Chandra S. J Am Coll Cardiol 2011 November 1;5 8(19):1933-1944.

Degenerative MV Disease

Prolapse: Free edge of the leaflet above the plane of the annulus at end-systole. Disruption of coaptation. **Billowing:** Systolic protrusion of leaflet body above the annulus plane Free leaflet edge remaining at or below the annular plane during end-systole

Lang RM, Tsang W, Weinert L, Mor-Avi V, Chandra S. J Am Coll Cardiol 2011 November 1;5 8(19):1933-1944.

3D Definition for Billowing and Prolapse

Prolapse extending to CL

Prolapse

Billowing

Addetia K, Lang RM et. al. J Am Soc Echocardiogr. 2014 Jan;27(1):8-16

MV Parametric Maps

Tsang W, Lang RM., J Am Soc Echocardiogr 2011;24:860-7.

Effect of Annular Shape on Leaflet Curvature in Reducing Mitral Leaflet Stress

Salgo I et al Circulation 2002; 106:711-717

Principal Stress

[Caiani and Votta, www.surgaid.org]

Pathology Observation

Normal leaflet motion.

- A. Leaflet perforation
 - B. Cleft deformity
 - C. Dilated annulus (without leaflet tethering)

Exaggerated leaflet motion

- A. Flail leaflet, generally with chordal rupture (eccentric jet)
- B. Billowing leaflets with prolapse (central jet)
- C. Billowing leaflets with associated flail (multiple central and eccentric jets)

Restricted leaflet motion

- A. Systolic and diastolic restriction (rheumatic) central jet
- B. Systolic restriction with symmetric tethering of both leaflets (central jet)
- C. Systolic restriction with asymmetric tethering (eccentric jet)

Systolic anterior motion (SAM)

A. Upper septal hypertrophy (e.g. hypertrophic cardiomyopathy)

- B. Post mitral valve repair
- C. Hypovolemic, hyperdynamic left ventricle

Hybrid conditions

TYPE V

TYPE 1

TYPE II

TYPE III

TYPE IV

Prolapse of anterior leaflet with restricted posterior leaflet Prolapse of posterior leaflet with SAM of anterior leaflet Intrinsic pathology with super added lesion of infective endocarditis

The Journal of Heart Valve Disease 2012;21:37-40

Type 1: Normal Leaflet Motion

Barlow's Prolapse

42year-old woman who complains of decreased exercise capacity of recent duration.

Barlow's Prolapse

Excess leaflet tissue with billowing, thickened leaflets and chordae, large annulus

Barlow's Prolapse

Fibroelastic Deficiency

Older individuals

- Short Hx of MR
- Rupture or elongation of a single chord
- Remaining segments are normal
- Posterior annulus may be dilated

Fibroelastic Deficiency

P2 - Prolapse

Fibroelastic Deficiency

Fibroelastic Deficiency

Flail MV: Ruptured chords

Can three-dimensional echocardiography accurately predict complexity of mitral valve repair?

Joanna Chikwe^{a,*}, David H. Adams^a, Kevin N. Su^b, Anelechi C. Anyanwu^a, Hung-Mo Lin^c, Andrew B. Goldstone^b, Roberto M. Lang^d and Gregory W. Fischer^b

Standard Repair

No or single leaflet resection

Sliding-plasty

Cleft Closure

Chordal or commissural repair techniques

Multisegment Involvement

Anterior Leaflet Prolapse

Scarcity of leaflet tissue

Severe Calcification

Prolapsing Height

Annular Dilatation > 50 mm

Complex Repairs

Bi-leaflet repair techniques

Multiple resections required

Patch augmentation

Anterior Leaflet Prolapse

Barlows Prolapse

Medial Commissure

P2 Flail

Modified Carpentier Leaflet resection and partial flexible ring

American Correction Full flexible ring, artificial chordae

Ben Zekry S, Lang RM, Zoghbi WA et al., J Am Soc Echocardiogr 2011; 24:1233-1242

Mitral Valve Repair American Correction vs Modified Carpentier

CAR

ED

Ben Zekry S, Lang RM, Zoghbi WA et al., J Am Soc Echocardiogr 2011; 24:1233-1242

Sub-Mitral Apparatus

Mid-esophageal

Transgastric

Papillary Muscle Positioning

Veronesi F, Lang RM et al., JAm Soc Echocardiogr 2008; 21(4):347-354

Dynamic Mitral Annulus Tracking

Veronesi F, Lang RM et al., J Am Soc Echocardiogr 2008; 21(4):347-354

Dynamic MA Tracking + PM Positioning

- *: p<0.05 vs Normal †: p<0.05 ISC-MR vs DCM-MR
- [Veronesi et al. JASE2008]
- Longer tethering lengths
- Wider θ angles
- Preserved symmetry

- Longer tethering lengths
- Wider θ angles
- Lost symmetry

Aortic and Mitral Valve Anatomic Relationship

Aortic-Mitral Coupling

Normal Behavior

Veronesi F, Lang RM et al., *Circ Imaging* 2009:2(1):24-31

TAVR

Tsang, Lang RM et al. EHJ: Cardiovascular Imaging 2013; doi:10.1093/ehjci/jet05

AORTIC-MITRAL COUPLING

Tsang, Lang RM et al. EHJ: Cardiovascular Imaging 2013;

Challenging the Hemispheric Assumption of Flow Convergence

Fluid Nodal Velocity

Chandra S, Lang RM et al. Am J Physiol Heart Circ Physiol. 2011;301(3):H1015-24.

Chandra S, Lang RM et al. Am J Physiol Heart Circ Physiol. 2011;301(3):H1015-24.

3D COMPUTATIONAL FLUID DYNAMICS FROM MVQ

Chandra S, Lang RM et al. Am J Physiol Heart Circ Physiol. 2011;301(3):H1015-24.

Automatic 3D PISA Surface Area

Courtesy: Mani Vannan

Promises and Perspectives Valves

Where have we been?

- Rapid dissemination and integration into clinical practice
- Mechanistic insight into MV disease
- Volumetric quantification
- Guidance of percutaneous procedures

Where are we going?

- Quantification of regurgitant lesions
- Automation measurements
- Outcome measures
- Custom prosthesis
- Other valves (Aortic, Tricuspid)

Thanks for your attention