Hypertrophic **Cardiomyopathy (HCM) Evaluation and Differential Diagnosis Role of Echocardiography**

William K. Freeman, MD, FACC, FASE

DISCLOSURES

Relevant Financial Relationship(s)

None

Off Label Usage

None

Hypertrophic Cardiomyopathy Echocardiographic Diagnosis

Left Ventricular Hypertrophy ≥ 15 mm (Asymmetric >> Symmetric)

In the absence of another cardiovascular or systemic disease associated with LVH or myocardial wall thickening

The mayo clinic

Gersh, BJ, et al. JACC 2011; 58: e212 ACC/AHA Guidelines

Hypertrophic Cardiomyopathy Echocardiographic Diagnosis

Not Mandatory for Diagnosis of HCM

- Asymmetric Septal Hypertrophy (ASH)
- Systolic Anterior Motion (SAM)
- Dynamic LVOT obstruction

Hypertrophic Cardiomyopathy Distribution of LVH (600 Patients)

Left Ventricular Morphology in HCM

Sigmoid	Reverse	Neutral	Apical
Septum	Septum	Septum	Variant

Binder J, et al. Mayo Clin Proc 2006; 81: 459.

Genetic testing for HCM Mayo Clinic Database (389 Patients)

- Echocardiographic anatomic phenotypes are not specific for individual gene mutations
- Specific gene mutations not predictive of prognosis or need for myectomy

LVH in HCM: Sigmoid Septum

T MAYO CLINIC

LVH in HCM: Neutral Septum

LVH in HCM: Reversed Septum

Systolic Anterior Motion (SAM)

HOCM: Systolic Anterior Motion (SAM)

- Drag effect >>> Venturi effect
- Anterior displacement of mitral valve and support apparatus; small LV cavity
- Septal encroachment into LVOT
- Mitral valve characteristics
 - Anterior displacement of papillary muscles
 - Unusual chordal attachments
 - Elongated anterior leaflet
 - Aberrant muscle bundles

Normal Anatomy of the LV Outflow Tract

Hypertrophic Cardiomyopathy

Systolic Anterior Motion (SAM)

Systolic Anterior Motion (SAM): LV Ejection → Obstruction → Regurgitation

Systolic Anterior Motion (SAM): LV Ejection

MAYO CLINIC

Systolic Anterior Motion (SAM): LV Ejection → Obstruction

Systolic Anterior Motion (SAM): LV Ejection → Obstruction → Regurgitation

Systolic Anterior Motion (SAM): LV Ejection → Obstruction → Regurgitation

Basal LVOT Obstruction

Basal LVOT Obstruction

Dynamic LVOT Obstruction vs. MR
CW Doppler ($\Delta P \cong 4V^2$)MRLVOT

 $\mathbb{FP}^{MAYO CLINIC}$

HCM Morphology and LVOT Obstruction Mayo Clinic HCM Database (2,856 Patients)

^{NIC} Ommen SR, et al. 2006

39 y/o Executive: New DOE during workouts Focal Anteroseptal Basal LVH = 17 mm

39 y/o Executive: New DOE during workouts Rest

39 y/o Executive: New DOE during workouts Rest

39 y/o Executive: New DOE During Workouts Resting LVOT gradient = 12 mmHg

MAYO CLINIC

39 y/o Executive: New DOE During Workouts Valsalva Maneuver

MAYO CLINIC

39 y/o Executive: New DOE During Workouts Valsalva Maneuver

39 y/o Executive: New DOE During Workouts Valsalva: LVOT gradient = 34 mmHg

39 y/o Executive: New DOE During Workouts Amyl Nitrite

39 y/o Executive: New DOE During Workouts Amyl Nitrite

39 y/o Executive: New DOE During Workouts Amyl Nitrite: LVOT gradient = 77 - 100 mmHg

MAYO CLINIC

Estimating LVOT Gradient Using MR Peak Velocity MR Velocity = 6.9 m/sec Systolic BP = 100 mmHg

F MAYO CLINIC

Mid-Cavitary LVOT Obstruction

MAYO CLINIC
Mid-Cavitary LVOT Obstruction

Mid-Cavitary LVOT Obstruction Asymmetric Inferior & Inferoseptal LVH

Mid-Cavitary LVOT Obstruction Asymmetric Inferior & Inferoseptal LVH

Mid-cavitary LVOT Gradient: 56 mmHg

LVOT Obstruction in HCM: More than SAM Alone Abnormal Mitral Support and Muscle Bundles

LVOT Obstruction in HCM: More than SAM Alone Abnormal Mitral Support and Muscle Bundles

LVOT Obstruction in HCM: More than SAM Alone Abnormal Mitral Support and Muscle Bundles

Apical HCM with Apical Aneurysm

Apical HCM with Apical Aneurysm

Apical HCM with Apical Aneurysm

Apical HCM with Apical Aneurysm Early and Late Systolic Outflow Obstruction ~ 60 mmHg

Hypertrophic Cardiomyopathy Complicated by Apical Aneurysm

- Apical abnormalities in apical HCM: Pouch: 15%; Aneurysm: 3%
- Adverse events associated with aneurysm (not apical pouch)
 - Progressive heart failure/death (18%)
 - SCD or revived cardiac arrest (14%)
 - Appropriate ICD discharge (11%)
 - Nonfatal embolic stroke (7%)

Binder J et al JASE 2011;24:775 Maron MS, et al. Circulation 2008;118:1541

Hypertrophic Cardiomyopathy Differential Diagnosis of Thickened LV Walls Cardiovascular

Acquired

Hypertension Aortic stenosis Athlete's heart

Systemic Disease

82 y/o Man: Hypertension x 30 yrs; No Sxs

34 y/o Triathlete: LVH on ECG, No Symptoms LV wall thickness 13 mm

Athlete's Heart versus HCM HCM Athlete's Heart

LV wall thickness Morphology	≥ 15 mm Asymmetric	< 15 mm (usually < 13 mm) Symmetric
LVEDD	<45mm	>55mm
Diastolic filling	Abnormal	Normal
LA volume	Increased	Normal
Response to deconditioning	None	Regression of LVH
Strain Imaging*	Abnormal	Normal

WAYO CLINIC Maron BJ. Heart 2005; 91: 1380 * Butz T, et al. Int J Cardiovasc Imaging 2011; 27:101

Hypertrophic Cardiomyopathy **Differential Diagnosis of Thickened LV Walls** Cardiovascular Acquired **Congenital Hypertension** Subaortic stenosis **Aortic stenosis** LV noncompaction Athlete's heart

Systemic Disease

71 y/o Woman: Murmur Since Childhood; Previously Treated as HOCM

Congenital Fibromuscular Subaortic Stenosis

68 y/o Woman: Abnormal ECG; Asymptomatic Left Ventricular Noncompaction Syndrome

68 y/o Woman: Abnormal ECG; Asymptomatic Left Ventricular Noncompaction Syndrome

Hypertrophic Cardiomyopathy **Differential Diagnosis of Thickened LV Walls** Cardiovascular **Acquired** <u>Congenital</u> **Hypertension** Subaortic stenosis **Aortic stenosis** LV noncompaction Athlete's heart

Systemic Disease

Fabry disease Cardiac amyloidosis Hypereosinophilic syndrome

70 y/o Man: Dyspnea on exertion Fabry Disease (Alpha-Galactosidase A Deficiency)

56 y/o Woman: Biventricular heart failure; SAM Amyloid Infiltrative Cardiomyopathy

Amyloid Infiltrative Cardiomyopathy

Low voltage QRS

Anteroseptal Pseudoinfarction Pattern

Risk Stratification in HCM Sudden Cardiac Death

Hypertrophic Cardiomyopathy (HCM) Arrhythmogenic Myocardial Substrate

Myocyte Disarray

Coronary Arteriole Remodeling

Ischemia Micro-infarction Fibrosis

MAYO CLINIC

Maron BJ. Circulation 2010; 121: 445

Sudden Cardiac Death (SCD) in HCM Primary Risk Factors

- SCD in 1° relative due to HCM
- Unexplained syncope (≥ 1 episode)
- Massive LVH (≥ 30 mm thickness)
- Nonsustained VT on ECG monitoring
- Exercise BP response : \downarrow or \rightarrow

HCM with massive (>30 mm) LV hypertrophy Septum: 42 mm; LV mass index 548 gm/m²

HCM with massive (>30 mm) LV hypertrophy Septum: 42 mm; LV mass index 548 gm/m²

Risk Stratification for Sudden Cardiac Death LV Wall Thickness and Clinical Risk Factors

G MAYO CLINIC Elliot PM, et al. Lancet 2001; 357: 420

Secondary Risk Factors

 Intramyocardial Fibrosis: Delayed gadolinium enhancement on MRI

- Apical LV aneurysm (Apical variant of HCM)
- Prior alcohol septal ablation
- Burning out phase of HCM (1-5% incidence)
- LVOT obstruction > 30 mmHg at rest (≤10% Positive Predictive Value)
Intramyocardial Fibrosis in HCM Delayed Gadolinium Enhancement (DGE) on MRI

Focal: Low Risk

Confluent: Higher risk

Intramyocardial Fibrosis in HCM Delayed Gadolinium Enhancement (DGE) on MRI

Predictors of DGE

- Reversed septal morphology
- Septal thickness
 > 20 mm
- LV Mass > 150 gm/m²
- LVEF < 50%

Nonsustained VT (43±14 Months F/U)

Intramyocardial Fibrosis in HCM: Detection by Echocardiography ?

Abnormal global and/or regional LV systolic function Apparent normal global and regional LV systolic function

Fibrosis likely where LV is dysfunctional Speckle Tracking Strain Imaging

Longitudinal Strain Imaging Risk Stratification in HCM

Abnormalities in longitudinal strain correlate directly with degree of myocardial fibrosis by DGE on MRI and also LV wall thickness

Popovic ZB, et al. J Am Soc Echocardiogr 2008; 21: 129

Longitudinal Strain Imaging Risk Stratification in HCM

The presence of strain values of ≥ -10% in > 3/18 LV segments is an independent predictor of nonsustained VT (Sensitivity 81%, Specificity 97%)

Di Salvo G, et al. J Am Soc Echocardiogr 2010; 23: 581

Longitudinal Strain

Cardiac MR Imaging: Delayed Gadolinium Enhancement

FD MAYO CLINIC

Sudden Cardiac Death (SCD) in HCM Uncertain Risk Factors

- Gene mutation (>1,000 mutations; 11 genes)
- Atrial fibrillation
- Coronary artery bridging
- Diastolic dysfunction

Modifiable Risk Factors

- Highly competitive sports
- Coronary artery disease

Gersh, BJ, Maron BJ et al. JACC 2011; 58: e212 ACC/AHA Guidelines

Abnormal Relaxation Mildly Elevated Filling Pressure (Grade Ia/IV)

MV Inflow

MAYO CLINIC

Medial TDI

E/e' = 0.6 / 0.03 = 20

Irreversible Restrictive Severely Elevated Filling Pressure (Grade IV/IV)

MV Inflow

Medial TDI

E/e' = 1.2 / 0.03 = 40

Restrictive Diastolic Dysfunction Prognosis in HCM (239 Patients)

WAYO CLINIC

Biagini E, et al. Am J Cardiol 2009; 104: 1727

Indications for ICD in Hypertrophic Cardiomyopathy

Gersh, BJ, Maron BJ et al. JACC 2011; 58: e212 ACC/AHA Guidelines

MAYO CLINIC

Family Screening for HCM by Echo

Optional unless:

- Malignant Family Hx
- Cardiac symptoms
- Competitive sports
- Other signs of LVH

12 to 18-21 Yrs Old

>18-21 Yrs Old

< 12 Yrs Old

Every 12 to 18 Months

Every 5 Yrs or as per clinical suspicion

Gersh, BJ, Maron BJ et al. JACC 2011; 58: e212 ACC/AHA Guidelines

Evaluation of HCM by Echocardiography

Comprehensive echocardiography is indispensable for the diagnosis and hemodynamic assessment of HCM

Echocardiography plays an important role in the clinical risk stratification and also the interventional management of the patient with HCM

