2016 ASE State of the Art Echocardiography Course | Tucson, AZ How Do I Evaluate a Patient Being Considered for TAVR?

Sunday, February 14, 2016 | 11:00 – 11:25 PM | 25 min

MUHAMED SARIĆ, MD, PHD Director of Echocardiography Lab Director of Operations, Noninvasive Cardiology Associate Professor of Medicine New York University Langone Medical Center

NYU Leon H. Charney Division of Cardiology

Disclosures

2

Speakers Bureau Philips, Medtronic

NYU Division of Cardiology

2/11/2016

NYU Division of Cardiology

2/11/2016

NYU Division of Cardiology

TAVR: PRIMARY INDICATIONS

(1) **Preferred treatment** for inoperable patients (ineligible for SAVR) with severe symptomatic aortic stenosis

(2)Alternative treatments for patients with severe symptomatic aortic stenosis who have high SAVR risk

History of TAVR | First Human Implantation in 2002

Alain Cribier (b. 1945) French Interventional Cardiologist

Performed first TAVR in 2002

(Also first to report percutaneous aortic balloon valvuloplasty in 1986)

Percutaneous Transcatheter Implantation of an Aortic Valve Prosthesis for Calcific Aortic Stenosis First Human Case Description

Alain Cribier, MD; Helene Eltchaninoff, MD; Assaf Bash, PhD; Nicolas Borenstein, MD; Christophe Tron, MD; Fabrice Bauer, MD; Genevieve Derumeaux, MD; Frederic Anselme, MD; François Laborde, MD; Martin B. Leon, MD

Background—The design of a percutaneous implantable prosthetic heart valve has become an important area for investigation. A percutaneously implanted heart valve (PHV) composed of 3 bovine pericardial leaflets mounted within

a balloon-expandable stent was develo implantation was performed in a 57-year and other associated noncardiac disea valvuloplasty had been performed with *Methods and Results*—With the use of an diseased native aortic valve, with accura or of the mitral valve function, and a implantation, valve function was excelle of 4 months, the valvular function rema and there was no recurrence of heart progressive worsening of the leg ischemi after PHV implantation.

Conclusions—Nonsurgical implantation o midterm hemodynamic and clinical imp confirmatory clinical implantations, PF selected patients with nonsurgical aortic This first human TAVR:

- (1) Would not meet current standard indication criteria (Patient had bicuspid aortic valve).
- (2) Was performed in a manner not performed now (It was done using transvenous, transseptal approach across the mitral valve).

2/11/2016

SURGICAL PROSTHETIC VALVE DEVELOPMENT

Trained at Bellevue Hospital, now part of NYU Medical Center

1960 Starr-Edwards mechanical valve

Albert Starr (b. 1926 in New York)

Miles Lowell Edwards (1898-1982)

1972 Carpentier-Edwards bioprosthetic valve

Alain Carpentier (b. 1933 in Toulouse)

SAVR & TAVR VALVE DEVELOPMENT

History of TAVR | First Animal Implantation in 1992

European Heart Journal (1992) 13, 704-708

Transluminal implantation of artificial heart valves. Description of a new expandable aortic valve and initial results with implantation by catheter technique in closed chest pigs

H. R. ANDERSEN*, L. L. KNUDSEN* AND J. M. HASENKAM[†]

Departments of *Cardiology, †Thoracic and Cardiovascular Surgery, and the Institute of Experimental Clinical Research, Skejby University Hospital, Aarhus, Denmark

KEY WORDS: Expandable stent-valve, transluminal implantation, prosthetic heart valve, pigs.

A new artificial aortic valve prosthesis was developed for implantation by the transluminal catheter technique without thoracotomy or extracorporal circulation. The new heart valve was prepared by mounting a porcine aortic valve into an expandable stent. Before implantation, the stent-valve was mounted on a balloon catheter and compressed around the deflated balloon. The stent-valve mounted balloon catheter was then advanced retrogradely to the ascending aorta or the aortic root in anaesthetized pigs. Implantation was performed by balloon inflation which expanded the stent-valve to a diameter exceeding the internal diameter of the vessel — thus ensuring a stable fixation against the vessel wall. A total of nine implantations were performed in seven 70 kg closed chest pigs. Sub- and supracoronary implantation was performed in two and three pigs, respectively, while implantation in both positions was done in two. Angiographic and haemodynamic evaluation after implantation revealed no significant stenosis (< 16 mm Ho in any of the nine valves and trivial regurgi

This first animal TAVR:

I flow in three animals. This nals by transluminal catheter

- Was the basis for subsequent balloonexpandable Sapien valve used in humans
- (2) Was performed in the same manner used in humans now (It was done using transarterial retrograde approach).

TAVR: The First Wave of Valves

11

NYU Leon H. Charney Division of Cardiology

1st Wave: What We Have Accomplished

15

NYU Leon H. Charney Division of Cardiology

SEVERE AORTIC STENOSIS

TEE: Transgastric View

SEVERE AORTIC STENOSIS

Continuous Wave (CW) Doppler

Pulsed Wave (PW) Doppler

AORTIC VALVE

VTI = 134 cm Vmax = 4.3 m/sec Peak/Mean Gradient 74/43 mm Hg LVOT

VTI = 24 cm Vmax = 0.8 m/sec $Area 3.14 \text{ cm}^2$

Dimensionless Index = 24 / 134 = 0.18 | Aortic Valve Area = 0.6 cm²

SEVERE AORTIC STENOSIS | TREATED WITH SAPIEN TAVR

SEVERE AORTIC STENOSIS | TREATED WITH COREVALVE TAVR

Aortic Valve Gradients | Pre & Post TAVR

 $\mathbf{20}$

Before TAVR (Severe native valve stenosis)

Ve 146 cm/ PG 9 mmH C 50 P Of Gen Vmax 137 cm/s 80.6 cm/s /mean 8 mmHq Max PG Mean PG 3 mmHg 30.0 cm -200 -100 -200

> After TAVR (Minimal aortic valve gradients)

NYU Division of Cardiology

TAVR | TREATMENT OUTCOMES

NATURAL HISTORY Symptomatic Severe AS					
Mortality					
2-year	50%				
5-year	80%				

Prognosis of severe symptomatic stenosis treated medically is abysmal.

					1-year	All-Cause M	ortality
			Ν	STS	Medical	SAVR	TAVR
Capier	Partner B	Inoperable	358	Very high	50.7%	[> 50%]	30.7%
Sapien	Partner A	High Risk	699	<u>></u> 10		26.8%	24.2%

					1-year	All-Cause M	ortality
	_		Ν	STS	Medical	SAVR	TAVR
Coro)/obro	Pivotal	Inoperable	489	Very <mark>hig</mark> h	36.5%	[> 50%]	26.5%
Corevalve	Pivotal	High Risk	795	<u>></u> 10		19.1%	14.2%

1ST WAVE OF TAVR: WHAT ELSE HAVE WE ACCOMPLISHED?

Simplified anesthesia management during TAVR

INITIAL TAVR EXPERIENCE

General anesthesia

Endotracheal intubation

TEE guidance

SUBSEQUNT TAVR EXPERIENCE

Moderate sedation

No endotracheal intubation

TTE guidance

JACC: CARDIOVASCULAR IMAGING © 2015 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER INC. VOL. 8, NO. 3, 2015 ISSN 1936-878X/\$36.00 http://dx.doi.org/10.1016/j.jcmg.2015.01.003

FOR DEBATES IN IMAGING

Optimal Imaging for Guiding TAVR: Transesophageal or Transthoracic Echocardiography, or Just Fluoroscopy?

Itzhak Kronzon, MD, Vladimir Jelnin, MD, Carlos E. Ruiz, MD, PHD, Muhamed Saric, MD, PHD, Mathew Russell Williams, MD, Albert M. Kasel, MD, Anupama Shivaraju, MD, Antonio Colombo, MD, Adnan Kastrati, MD Section Editor: Partho P. Sengupta, MD

THE FOLLOWING IFORUM DEBATE FEATURES 3 VIEWPOINTS related to the most practical and effective imaging strategy for guiding transcatheter aortic valve replacement (TAVR). Kronzon, et al. provide evidence that enhanced analysis of aortic valve anatomy and improved appreciation of complications mandate the use of transeso-phageal echocardiography as front-line imaging modality for ALL patients undergoing TAVR. On the other hand, Saric and colleagues compare and contrast the approach of performing TAVR under transthoracic guidance. Lastly, Kasel and co-workers provide preliminary evidence that TAVR could be performed under fluoroscopic guidance without the need for additional imaging technique. Although the use of less-intensive sedation or anesthesia might reduce the procedural time, we need more randomized data to establish the most cost-effective approach in guiding TAVR.

2/11/2016

NYU TAVR TEAM

Using 3-D echocardiography, Muhamed Saric, MD, PhD (left), guides the positioning and deployment of the replacement valve in real time.

A Team Approach for Replacing Heart Valves

Mathew Williams, MD, prepare to insert the compressed replacement valve into the catheter. Dr. Williams has performed more TAVRs than any surgeon in the U.S.

One of the procedures made possible by NYU Langone Medical Center's state-of-theart hybrid OR—equipped for both surgery and catheterization—is transcatheter aortic valve replacement (TAVR). TAVR allows a narrowed, stiffened valve to be replaced through a catheter, a minimally invasive approach requiring moderate sedation and two small incisions. About 250,000 Americans are estimated to suffer from severe aortic stenosis, which limits blood flow from the heart. Without a valve replacement, half will not survive more than two years after the onset of symptoms. Guided by X-ray fluoroscopy, interventional cardiologist James Slater, MD, the Robert and Marc Bell Professor of Cardiology, inserts a catheter in an artery in the groin and threads it up into the heart.

> The artificial valve, enveloped in a metal scaffold, or stent, collapses to the width of a pencil, allowing it to fit inside an artery.

CoreValve Deployed

27

POST TAVR COMPLICATION: VSD + GERBODE DEFECT

POST TAVR COMPLICATION: VSD + GERBODE DEFECT

NYU Leon H. Charney Division of Cardiology

POST TAVR COMPLICATION: VSD + GERBODE DEFECT

POST TAVR COMPLICATION: MEMBRANOUS VSD + GERBODE DEFECT

Frank Gerbode (1907-1984) American Cardiac Surgeon

Membranous Septum

1ST WAVE TAVR

We have accomplished a lot...

...so what's the problem?

PARAVALVULAR AORTIC REGURGITATION POST TAVR

Trivial PVL

Marked PVL

PARAVALVULAR AORTIC REGURGITATION POST TAVR

No easy way to grade it

Table 4 VARC II Recommendations for Evaluation of Aortic and/or Paravalvular Regurgitation After TAVR

	Mild	Moderate	Severe
Semiquantitative parameters			
Diastolic flow reversal in the descending aorta—pulsed wave	Absent or brief early diastolic	Intermediate	Prominent, holodiastolic
Circumferential extent of prosthetic valve paravalvular regurgitation (%)*	<10	10-29	≥30
Quantitative parameters†			
Regurgitant volume (ml/beat)	<30	30-59	≥60
Regurgitant fraction (%)	<30	30-49	≥50
Effective regurgitant orifice area (cm ²)	0.10	0.10-0.29	≥0.30

*Not well validated and may overestimate severity compared with quantitative Doppler. †For LVOT >2.5 cm, significant stenosis criteria is <0.20. Adapted with permission from Kappetein et al. (66). VARC = Valve Academic Research Consortium; other abbreviations as in Table 1.

VARC II Criteria

An expert consensus without empiric validation

ĺ

PARAVALVULAR AR POST TAVR | EROA BY 3D ECHO

PARAVALVULAR AR POST TAVR | IMPACT ON SURVIVAL

Higher grades of paravalvular AR portend worse prognosis.

Even mild paravalvular AR portends worse prognosis.

PARAVALVULAR AR POST TAVR | IMPACT ON SURVIVAL

Study nam	<u>1e</u>		Statistic	tatistics for each study			Hazard ratio and 95% CI
		Hazard ratio	Lower limit	Upper limit	Z-Value	p-Value	
Lemos*		4.900	1.367	17.570	2.439	0.015	
Hayashida		1.970	1.187	3.271	2.621	0.009	
Amabile		1.500	0.329	6.829	0.524	0.600	
Sinning		3.890	2.020	7.491	4.063	0.000	Moderate/Severe
Tamburino)	3.785	1.572	9.112	2.969	0.003	narayabular AR
Fraccaro		2.190	1.023	4.686	2.020	0.043	
Kodali		2.110	1.433	3.107	3.783	0.000	
Moat		1.490	1.002	2.215	1.971	0.049	
Gilard		2.490	1.909	3.248	6.728	0.000	
All (N=479)1)	2.273	1.840	2.808	7.609	0.000	0.1 0.2 0.5 1 2 5 10
Study name Statistics for each study			Hazard ratio and 95% Cl				
	Hazard ratio	Lower	Upp lin	oer hit Z	Z-Value	p-Value	
Lemos	10.080	1.22	9 82.0	673	2.152	0.031	
Sinning	2.342	1.06	6 5.	145	2.119	0.034	
Kodali	2.110	1.43	3 3.	107	3.782	0.000	naravahyılar AR
Fraccaro	2.064	0.96	8 4.4	400	1.876	0.061	
Tamburino	0.780	0.49	9 1.3	218	-1.092	0.275	
All (N=1620)	1.829	1.00	5 3.3	329	1.975	0.048	

Decreased Risk Increased Risk

2

5 10

0.5

37

0.1 0.2

PARAVALVULAR AR POST TAVR | MECHANISMS

NYU Leon H. Charney Division of Cardiology

38

Annular Sizing

39

NYU Leon H. Charney Division of Cardiology

JACC: CARDIOVASCULAR IMAGING © 2013 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER INC. VOL. 6, NO. 2, 2013 ISSN 1936-878X/\$36.00 http://dx.doi.org/10.1016/j.jcmg.2012.12.005

RE STATE-OF-THE-ART PAPER

Standardized Imaging for Aortic Annular Sizing

Implications for Transcatheter Valve Selection

Albert M. Kasel, MD,* Salvatore Cassese, MD,* Sabine Bleiziffer, MD,† Makoto Amaki, MD, PHD,‡ Rebecca T. Hahn, MD,§ Adnan Kastrati, MD,* Partho P. Sengupta, MD‡ *Munich, Germany; and New York, New York*

1º Generation Medtronic CoreValve

TAVR-RELATED AORTIC ROOT MEASUREMENTS

Some interventionalists prefer **CT measurements** of aortic root over echocardiographic measurements...

...because calcifications interfere with echo but not CT imaging.

AORTIC ANNULAR SIZING | CT

Medtronic CoreValve

Edwards Sapien & Sapien XT

SXT 26

BAV 25 mm

SXT 29

BAV 23 mm

SXT 23

AORTIC ANNULAR SIZING | 3D TEE

NYU Leon H. Charney Division of Cardiology

Post Dilation for TAVR PVL

• 46)•

NYU Leon H. Charney Division of Cardiology

BALLOON POST DILATATION | ACCENTED MEANS OF REDUCING PVL

Valve-in-Valve For TAVR PVL

48)

NYU Leon H. Charney Division of Cardiology

1ST COREVALVE MALPOSITIONED >> PARAVALVULAR AR

2ND COREVALVE PLACED VIV >> NO MORE PARAVALVULAR AR

New Generation of TAVR Valves

51

NYU Leon H. Charney Division of Cardiology

NEW WAVE OF TAVR VALVES

(1) Repositionable during delivery

(2) Special proximal prosthetic **skirt design** to prevent PVLs

COREVALVE EVOLUT R

SAPIEN 3

Enhanced frame design

- New frame geometry
- High radial strength

Bovine pericardial tissue

- New leaflet shape
- Carpentier-Edwards ThermaFix* process for anti-calcification

2/11/2016

DIRECT FLOW

Double Ring design. Full thickness bovine pericardial tissue.

Large area of coaptation for sealing in irregular shapes and conditions

Stress relief attachment to secure and add durability

Sealing rings to prevent aortic regurgitation and provide long term ingrowth, sealing, and stabilization

DIRECT FLOW

DIRECT FLOW

NYU Leon H. Charney Division of Cardiology

Portico

- Treats annulus range from 19-27 mm*
- Bovine pericardial valve with porcine cuff
- Fully retrievable, repositionable and resheathable

LOTUS

LOTUS

EDWARDS CENTERA

ENGAGER

SYMETIS ACUARATE

JENA VALVE

Thank You!

New York University Medical Center